Application of RBF neural network in fault diagnosis of FOG SINS

Taking FOG SINS (fiber-optic gyroscope strapdown inertial system) as an object, a new fault diagnostic scheme based on RBF(radial basis function) neural network is proposed. Being capable of training and simulating data off-line, neural networks provide a solution to overcome some drawbacks of the q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wu Lei, Sun Rong-Ping, Cheng Jian-Hua
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1035
container_issue
container_start_page 1032
container_title
container_volume
creator Wu Lei
Sun Rong-Ping
Cheng Jian-Hua
description Taking FOG SINS (fiber-optic gyroscope strapdown inertial system) as an object, a new fault diagnostic scheme based on RBF(radial basis function) neural network is proposed. Being capable of training and simulating data off-line, neural networks provide a solution to overcome some drawbacks of the quantitative fault diagnosis. The fault tree of FOG SINS is analyzed, which is the basis of the study of neural network fault diagnosis technology. The structure and inferential mechanism of RBF network used for elementary fault diagnosis are discussed in detail. Training simulation results of the neural network are given and an improved effect with real data is obtained, which show the feasibility of the proposed scheme.
doi_str_mv 10.1109/ICCAS.2008.4694651
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4694651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4694651</ieee_id><sourcerecordid>4694651</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-37a71069df1e89d4ece429a3390a73a7dc76b539d56cc490239aac3b6452405d3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdEUGtfQDfzAol3Mj_J3RmDqYFiwXRfbmcmMhqTkKSIb2_Vrg4fHD44jN0KiIUAvK-KIq_jBCCLlUFltDhj1xmiTIQGoc7_hgaQGWaXbDlN7wAg0KRCmCv2kA9DGyzNoe943_DXx5J3_jBSe8T81Y8fPHS8oUM7cxforeunMP2K5WbF6-qlvmEXDbWTX564YNvyaVs8R-vNqirydRQQ5kimlAow6BrhM3TKW68SJCkRKJWUOpuavZbotLFWISQSiazcG6UTBdrJBbv7vw3e-90whk8av3enYPkDOJVIAw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of RBF neural network in fault diagnosis of FOG SINS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu Lei ; Sun Rong-Ping ; Cheng Jian-Hua</creator><creatorcontrib>Wu Lei ; Sun Rong-Ping ; Cheng Jian-Hua</creatorcontrib><description>Taking FOG SINS (fiber-optic gyroscope strapdown inertial system) as an object, a new fault diagnostic scheme based on RBF(radial basis function) neural network is proposed. Being capable of training and simulating data off-line, neural networks provide a solution to overcome some drawbacks of the quantitative fault diagnosis. The fault tree of FOG SINS is analyzed, which is the basis of the study of neural network fault diagnosis technology. The structure and inferential mechanism of RBF network used for elementary fault diagnosis are discussed in detail. Training simulation results of the neural network are given and an improved effect with real data is obtained, which show the feasibility of the proposed scheme.</description><identifier>ISBN: 8995003898</identifier><identifier>ISBN: 9788995003893</identifier><identifier>EISBN: 8993215014</identifier><identifier>EISBN: 9788993215014</identifier><identifier>DOI: 10.1109/ICCAS.2008.4694651</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Automation ; Circuit faults ; Control systems ; Digital signal processing ; Fault diagnosis ; Fault trees ; FOG SINS ; Neural networks ; Radial basis function networks ; RBF neural network ; Silicon compounds</subject><ispartof>2008 International Conference on Control, Automation and Systems, 2008, p.1032-1035</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4694651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4694651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu Lei</creatorcontrib><creatorcontrib>Sun Rong-Ping</creatorcontrib><creatorcontrib>Cheng Jian-Hua</creatorcontrib><title>Application of RBF neural network in fault diagnosis of FOG SINS</title><title>2008 International Conference on Control, Automation and Systems</title><addtitle>ICCAS</addtitle><description>Taking FOG SINS (fiber-optic gyroscope strapdown inertial system) as an object, a new fault diagnostic scheme based on RBF(radial basis function) neural network is proposed. Being capable of training and simulating data off-line, neural networks provide a solution to overcome some drawbacks of the quantitative fault diagnosis. The fault tree of FOG SINS is analyzed, which is the basis of the study of neural network fault diagnosis technology. The structure and inferential mechanism of RBF network used for elementary fault diagnosis are discussed in detail. Training simulation results of the neural network are given and an improved effect with real data is obtained, which show the feasibility of the proposed scheme.</description><subject>Automatic control</subject><subject>Automation</subject><subject>Circuit faults</subject><subject>Control systems</subject><subject>Digital signal processing</subject><subject>Fault diagnosis</subject><subject>Fault trees</subject><subject>FOG SINS</subject><subject>Neural networks</subject><subject>Radial basis function networks</subject><subject>RBF neural network</subject><subject>Silicon compounds</subject><isbn>8995003898</isbn><isbn>9788995003893</isbn><isbn>8993215014</isbn><isbn>9788993215014</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURkdEUGtfQDfzAol3Mj_J3RmDqYFiwXRfbmcmMhqTkKSIb2_Vrg4fHD44jN0KiIUAvK-KIq_jBCCLlUFltDhj1xmiTIQGoc7_hgaQGWaXbDlN7wAg0KRCmCv2kA9DGyzNoe943_DXx5J3_jBSe8T81Y8fPHS8oUM7cxforeunMP2K5WbF6-qlvmEXDbWTX564YNvyaVs8R-vNqirydRQQ5kimlAow6BrhM3TKW68SJCkRKJWUOpuavZbotLFWISQSiazcG6UTBdrJBbv7vw3e-90whk8av3enYPkDOJVIAw</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Wu Lei</creator><creator>Sun Rong-Ping</creator><creator>Cheng Jian-Hua</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Application of RBF neural network in fault diagnosis of FOG SINS</title><author>Wu Lei ; Sun Rong-Ping ; Cheng Jian-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-37a71069df1e89d4ece429a3390a73a7dc76b539d56cc490239aac3b6452405d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automatic control</topic><topic>Automation</topic><topic>Circuit faults</topic><topic>Control systems</topic><topic>Digital signal processing</topic><topic>Fault diagnosis</topic><topic>Fault trees</topic><topic>FOG SINS</topic><topic>Neural networks</topic><topic>Radial basis function networks</topic><topic>RBF neural network</topic><topic>Silicon compounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu Lei</creatorcontrib><creatorcontrib>Sun Rong-Ping</creatorcontrib><creatorcontrib>Cheng Jian-Hua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu Lei</au><au>Sun Rong-Ping</au><au>Cheng Jian-Hua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of RBF neural network in fault diagnosis of FOG SINS</atitle><btitle>2008 International Conference on Control, Automation and Systems</btitle><stitle>ICCAS</stitle><date>2008-10</date><risdate>2008</risdate><spage>1032</spage><epage>1035</epage><pages>1032-1035</pages><isbn>8995003898</isbn><isbn>9788995003893</isbn><eisbn>8993215014</eisbn><eisbn>9788993215014</eisbn><abstract>Taking FOG SINS (fiber-optic gyroscope strapdown inertial system) as an object, a new fault diagnostic scheme based on RBF(radial basis function) neural network is proposed. Being capable of training and simulating data off-line, neural networks provide a solution to overcome some drawbacks of the quantitative fault diagnosis. The fault tree of FOG SINS is analyzed, which is the basis of the study of neural network fault diagnosis technology. The structure and inferential mechanism of RBF network used for elementary fault diagnosis are discussed in detail. Training simulation results of the neural network are given and an improved effect with real data is obtained, which show the feasibility of the proposed scheme.</abstract><pub>IEEE</pub><doi>10.1109/ICCAS.2008.4694651</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 8995003898
ispartof 2008 International Conference on Control, Automation and Systems, 2008, p.1032-1035
issn
language eng
recordid cdi_ieee_primary_4694651
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Automation
Circuit faults
Control systems
Digital signal processing
Fault diagnosis
Fault trees
FOG SINS
Neural networks
Radial basis function networks
RBF neural network
Silicon compounds
title Application of RBF neural network in fault diagnosis of FOG SINS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20RBF%20neural%20network%20in%20fault%20diagnosis%20of%20FOG%20SINS&rft.btitle=2008%20International%20Conference%20on%20Control,%20Automation%20and%20Systems&rft.au=Wu%20Lei&rft.date=2008-10&rft.spage=1032&rft.epage=1035&rft.pages=1032-1035&rft.isbn=8995003898&rft.isbn_list=9788995003893&rft_id=info:doi/10.1109/ICCAS.2008.4694651&rft_dat=%3Cieee_6IE%3E4694651%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=8993215014&rft.eisbn_list=9788993215014&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4694651&rfr_iscdi=true