MU016- deposition methods of BiFeO3 thin films

Bismuth iron oxide (BiFeO3 or BFO) is a particularly interesting multiferroic perovskite with ferroelectric and antiferromagnetic transition temperatures significantly above room temperature. In this work, BiFeO3 films are synthesized by a chemical solution deposition (CSD) sol-gel process on platin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Casper, M.D., Losego, M.D., Aygun, S.M., Maria, J-P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume 2
creator Casper, M.D.
Losego, M.D.
Aygun, S.M.
Maria, J-P.
description Bismuth iron oxide (BiFeO3 or BFO) is a particularly interesting multiferroic perovskite with ferroelectric and antiferromagnetic transition temperatures significantly above room temperature. In this work, BiFeO3 films are synthesized by a chemical solution deposition (CSD) sol-gel process on platinized silicon substrates and by physical vapor deposition (PVD) through RF-sputtering on iridium-sapphire substrates. The crystallization behavior and phase assemblage of these films was examined by X-ray diffraction (XRD). Analysis of CSD-prepared films revealed that a 0.25 M solution with 5% excess bismuth annealed at 550 °C in air produced polycrystalline films with the lowest occurrence of non-perovskite Bismuth iron oxide phases. For films made by PVD, the absence of oxygen during sputtering was found to enhance phase purity, and using a target with 7% excess bismuth allowed phase-pure films to be prepared at 600 °C. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the microstructure of the BiFeO3 films. Porosity was found to be a significant problem in CSD-prepared films that were dried on a hotplate at 300 °C before annealing. Lowering the temperature of this drying step or omitting it was found to decrease root-mean-square (rms) surface roughness. The microstructure of the sputtered films was found to be dense, uniform, and crack-free a surface roughness of to 16 nm for BiFeO3 sputtered at 600 °C.
doi_str_mv 10.1109/ISAF.2008.4693788
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4693788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4693788</ieee_id><sourcerecordid>4693788</sourcerecordid><originalsourceid>FETCH-ieee_primary_46937883</originalsourceid><addsrcrecordid>eNp9jjsOgkAUAJ-_RFAOYGz2AuB-HuxSqpFoYSzUmpCwhDXyCUvj7aXA1mqKSSYDsGE0YIzGu8t9nwScUhVgFAup1ARchhyRSwz5FBwuZOhTRDUDL5bq5xDn4AyB2EcpcAmutS9Kh1CEDgTXJ2WRT3LdNtb0pqlJpfuyyS1pCnIwib4J0pemJoV5V3YNiyJ7W-2NXME2OT2OZ99ordO2M1XWfdLxT_y3X4f4Nno</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MU016- deposition methods of BiFeO3 thin films</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Casper, M.D. ; Losego, M.D. ; Aygun, S.M. ; Maria, J-P.</creator><creatorcontrib>Casper, M.D. ; Losego, M.D. ; Aygun, S.M. ; Maria, J-P.</creatorcontrib><description>Bismuth iron oxide (BiFeO3 or BFO) is a particularly interesting multiferroic perovskite with ferroelectric and antiferromagnetic transition temperatures significantly above room temperature. In this work, BiFeO3 films are synthesized by a chemical solution deposition (CSD) sol-gel process on platinized silicon substrates and by physical vapor deposition (PVD) through RF-sputtering on iridium-sapphire substrates. The crystallization behavior and phase assemblage of these films was examined by X-ray diffraction (XRD). Analysis of CSD-prepared films revealed that a 0.25 M solution with 5% excess bismuth annealed at 550 °C in air produced polycrystalline films with the lowest occurrence of non-perovskite Bismuth iron oxide phases. For films made by PVD, the absence of oxygen during sputtering was found to enhance phase purity, and using a target with 7% excess bismuth allowed phase-pure films to be prepared at 600 °C. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the microstructure of the BiFeO3 films. Porosity was found to be a significant problem in CSD-prepared films that were dried on a hotplate at 300 °C before annealing. Lowering the temperature of this drying step or omitting it was found to decrease root-mean-square (rms) surface roughness. The microstructure of the sputtered films was found to be dense, uniform, and crack-free a surface roughness of to 16 nm for BiFeO3 sputtered at 600 °C.</description><identifier>ISSN: 1099-4734</identifier><identifier>ISBN: 9781424427444</identifier><identifier>ISBN: 1424427444</identifier><identifier>EISSN: 2375-0448</identifier><identifier>EISBN: 1424427452</identifier><identifier>EISBN: 9781424427451</identifier><identifier>DOI: 10.1109/ISAF.2008.4693788</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annealing ; Atherosclerosis ; Atomic force microscopy ; Bismuth ; Chemical vapor deposition ; Ferroelectric films ; Iron ; Scanning electron microscopy ; Sputtering ; Temperature</subject><ispartof>2008 17th IEEE International Symposium on the Applications of Ferroelectrics, 2008, Vol.2, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4693788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4693788$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Casper, M.D.</creatorcontrib><creatorcontrib>Losego, M.D.</creatorcontrib><creatorcontrib>Aygun, S.M.</creatorcontrib><creatorcontrib>Maria, J-P.</creatorcontrib><title>MU016- deposition methods of BiFeO3 thin films</title><title>2008 17th IEEE International Symposium on the Applications of Ferroelectrics</title><addtitle>ISAF</addtitle><description>Bismuth iron oxide (BiFeO3 or BFO) is a particularly interesting multiferroic perovskite with ferroelectric and antiferromagnetic transition temperatures significantly above room temperature. In this work, BiFeO3 films are synthesized by a chemical solution deposition (CSD) sol-gel process on platinized silicon substrates and by physical vapor deposition (PVD) through RF-sputtering on iridium-sapphire substrates. The crystallization behavior and phase assemblage of these films was examined by X-ray diffraction (XRD). Analysis of CSD-prepared films revealed that a 0.25 M solution with 5% excess bismuth annealed at 550 °C in air produced polycrystalline films with the lowest occurrence of non-perovskite Bismuth iron oxide phases. For films made by PVD, the absence of oxygen during sputtering was found to enhance phase purity, and using a target with 7% excess bismuth allowed phase-pure films to be prepared at 600 °C. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the microstructure of the BiFeO3 films. Porosity was found to be a significant problem in CSD-prepared films that were dried on a hotplate at 300 °C before annealing. Lowering the temperature of this drying step or omitting it was found to decrease root-mean-square (rms) surface roughness. The microstructure of the sputtered films was found to be dense, uniform, and crack-free a surface roughness of to 16 nm for BiFeO3 sputtered at 600 °C.</description><subject>Annealing</subject><subject>Atherosclerosis</subject><subject>Atomic force microscopy</subject><subject>Bismuth</subject><subject>Chemical vapor deposition</subject><subject>Ferroelectric films</subject><subject>Iron</subject><subject>Scanning electron microscopy</subject><subject>Sputtering</subject><subject>Temperature</subject><issn>1099-4734</issn><issn>2375-0448</issn><isbn>9781424427444</isbn><isbn>1424427444</isbn><isbn>1424427452</isbn><isbn>9781424427451</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jjsOgkAUAJ-_RFAOYGz2AuB-HuxSqpFoYSzUmpCwhDXyCUvj7aXA1mqKSSYDsGE0YIzGu8t9nwScUhVgFAup1ARchhyRSwz5FBwuZOhTRDUDL5bq5xDn4AyB2EcpcAmutS9Kh1CEDgTXJ2WRT3LdNtb0pqlJpfuyyS1pCnIwib4J0pemJoV5V3YNiyJ7W-2NXME2OT2OZ99ordO2M1XWfdLxT_y3X4f4Nno</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Casper, M.D.</creator><creator>Losego, M.D.</creator><creator>Aygun, S.M.</creator><creator>Maria, J-P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200802</creationdate><title>MU016- deposition methods of BiFeO3 thin films</title><author>Casper, M.D. ; Losego, M.D. ; Aygun, S.M. ; Maria, J-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_46937883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Annealing</topic><topic>Atherosclerosis</topic><topic>Atomic force microscopy</topic><topic>Bismuth</topic><topic>Chemical vapor deposition</topic><topic>Ferroelectric films</topic><topic>Iron</topic><topic>Scanning electron microscopy</topic><topic>Sputtering</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Casper, M.D.</creatorcontrib><creatorcontrib>Losego, M.D.</creatorcontrib><creatorcontrib>Aygun, S.M.</creatorcontrib><creatorcontrib>Maria, J-P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Casper, M.D.</au><au>Losego, M.D.</au><au>Aygun, S.M.</au><au>Maria, J-P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MU016- deposition methods of BiFeO3 thin films</atitle><btitle>2008 17th IEEE International Symposium on the Applications of Ferroelectrics</btitle><stitle>ISAF</stitle><date>2008-02</date><risdate>2008</risdate><volume>2</volume><spage>1</spage><epage>3</epage><pages>1-3</pages><issn>1099-4734</issn><eissn>2375-0448</eissn><isbn>9781424427444</isbn><isbn>1424427444</isbn><eisbn>1424427452</eisbn><eisbn>9781424427451</eisbn><abstract>Bismuth iron oxide (BiFeO3 or BFO) is a particularly interesting multiferroic perovskite with ferroelectric and antiferromagnetic transition temperatures significantly above room temperature. In this work, BiFeO3 films are synthesized by a chemical solution deposition (CSD) sol-gel process on platinized silicon substrates and by physical vapor deposition (PVD) through RF-sputtering on iridium-sapphire substrates. The crystallization behavior and phase assemblage of these films was examined by X-ray diffraction (XRD). Analysis of CSD-prepared films revealed that a 0.25 M solution with 5% excess bismuth annealed at 550 °C in air produced polycrystalline films with the lowest occurrence of non-perovskite Bismuth iron oxide phases. For films made by PVD, the absence of oxygen during sputtering was found to enhance phase purity, and using a target with 7% excess bismuth allowed phase-pure films to be prepared at 600 °C. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the microstructure of the BiFeO3 films. Porosity was found to be a significant problem in CSD-prepared films that were dried on a hotplate at 300 °C before annealing. Lowering the temperature of this drying step or omitting it was found to decrease root-mean-square (rms) surface roughness. The microstructure of the sputtered films was found to be dense, uniform, and crack-free a surface roughness of to 16 nm for BiFeO3 sputtered at 600 °C.</abstract><pub>IEEE</pub><doi>10.1109/ISAF.2008.4693788</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1099-4734
ispartof 2008 17th IEEE International Symposium on the Applications of Ferroelectrics, 2008, Vol.2, p.1-3
issn 1099-4734
2375-0448
language eng
recordid cdi_ieee_primary_4693788
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Annealing
Atherosclerosis
Atomic force microscopy
Bismuth
Chemical vapor deposition
Ferroelectric films
Iron
Scanning electron microscopy
Sputtering
Temperature
title MU016- deposition methods of BiFeO3 thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MU016-%20deposition%20methods%20of%20BiFeO3%20thin%20films&rft.btitle=2008%2017th%20IEEE%20International%20Symposium%20on%20the%20Applications%20of%20Ferroelectrics&rft.au=Casper,%20M.D.&rft.date=2008-02&rft.volume=2&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.issn=1099-4734&rft.eissn=2375-0448&rft.isbn=9781424427444&rft.isbn_list=1424427444&rft_id=info:doi/10.1109/ISAF.2008.4693788&rft_dat=%3Cieee_6IE%3E4693788%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424427452&rft.eisbn_list=9781424427451&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4693788&rfr_iscdi=true