Homographic line generation and transformation technique for dynamic object association

Object association among multiple cameras is an important capability for maintaining consistent view of surroundings. This is necessary in many applications such as tracking and surveillance. In this paper, we present a dynamic homographic line generation technique supporting the camera movement for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shung Han Cho, Sangjin Hong, We-Duke Cho
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue
container_start_page 273
container_title
container_volume
creator Shung Han Cho
Sangjin Hong
We-Duke Cho
description Object association among multiple cameras is an important capability for maintaining consistent view of surroundings. This is necessary in many applications such as tracking and surveillance. In this paper, we present a dynamic homographic line generation technique supporting the camera movement for object association in the multiple visual sensors network. The conventional method uses the globally defined homographic lines or the feature based methods for the object association. However, these methods restrict the camera movement (i.e., panning, tilting and zooming) required for efficient and effective association in the autonomous surveillance system. The proposed method uses the table based compensation for non-ideal camera parameters to support the camera movement. Lastly, two possible application models are simulated with the proposed technique.
doi_str_mv 10.1109/MLSP.2008.4685492
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4685492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685492</ieee_id><sourcerecordid>4685492</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bb433bc6fe36c3807d1ef4e7e6323560578a3fa2bc5fcf73a20d97493104e3d23</originalsourceid><addsrcrecordid>eNo1UEtOwzAUND-JUnoAxMYXSLH97NheoopSpCCQAMGucpzn1lXjlCQsensiWmYz0vwWQ8gNZ1POmb17Lt5ep4IxM5W5UdKKE3LFpZBSgM71KRkNbDIrzNcZmVht_j3FzsmIK8UzoSS_JJOu27ABUgG3bEQ-F03drFq3W0dPtzEhXWHC1vWxSdSlivatS11o2vog9ejXKX7_IB00Wu2Tq4diU27Q99R1XePjX_CaXAS37XBy5DH5mD-8zxZZ8fL4NLsvssi16rOylAClzwNC7sEwXXEMEjXmIEDlTGnjIDhRehV80OAEq6yWFjiTCJWAMbk97EZEXO7aWLt2vzx-BL-fHlff</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Homographic line generation and transformation technique for dynamic object association</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shung Han Cho ; Sangjin Hong ; We-Duke Cho</creator><creatorcontrib>Shung Han Cho ; Sangjin Hong ; We-Duke Cho</creatorcontrib><description>Object association among multiple cameras is an important capability for maintaining consistent view of surroundings. This is necessary in many applications such as tracking and surveillance. In this paper, we present a dynamic homographic line generation technique supporting the camera movement for object association in the multiple visual sensors network. The conventional method uses the globally defined homographic lines or the feature based methods for the object association. However, these methods restrict the camera movement (i.e., panning, tilting and zooming) required for efficient and effective association in the autonomous surveillance system. The proposed method uses the table based compensation for non-ideal camera parameters to support the camera movement. Lastly, two possible application models are simulated with the proposed technique.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 9781424423750</identifier><identifier>ISBN: 1424423759</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 1424423767</identifier><identifier>EISBN: 9781424423767</identifier><identifier>DOI: 10.1109/MLSP.2008.4685492</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic distortion ; Acoustic noise ; Acoustic sensors ; Application software ; Cameras ; Labeling ; Lenses ; Reverberation ; Surveillance ; Target tracking</subject><ispartof>2008 IEEE Workshop on Machine Learning for Signal Processing, 2008, p.273-278</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4685492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shung Han Cho</creatorcontrib><creatorcontrib>Sangjin Hong</creatorcontrib><creatorcontrib>We-Duke Cho</creatorcontrib><title>Homographic line generation and transformation technique for dynamic object association</title><title>2008 IEEE Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>Object association among multiple cameras is an important capability for maintaining consistent view of surroundings. This is necessary in many applications such as tracking and surveillance. In this paper, we present a dynamic homographic line generation technique supporting the camera movement for object association in the multiple visual sensors network. The conventional method uses the globally defined homographic lines or the feature based methods for the object association. However, these methods restrict the camera movement (i.e., panning, tilting and zooming) required for efficient and effective association in the autonomous surveillance system. The proposed method uses the table based compensation for non-ideal camera parameters to support the camera movement. Lastly, two possible application models are simulated with the proposed technique.</description><subject>Acoustic distortion</subject><subject>Acoustic noise</subject><subject>Acoustic sensors</subject><subject>Application software</subject><subject>Cameras</subject><subject>Labeling</subject><subject>Lenses</subject><subject>Reverberation</subject><subject>Surveillance</subject><subject>Target tracking</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781424423750</isbn><isbn>1424423759</isbn><isbn>1424423767</isbn><isbn>9781424423767</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtOwzAUND-JUnoAxMYXSLH97NheoopSpCCQAMGucpzn1lXjlCQsensiWmYz0vwWQ8gNZ1POmb17Lt5ep4IxM5W5UdKKE3LFpZBSgM71KRkNbDIrzNcZmVht_j3FzsmIK8UzoSS_JJOu27ABUgG3bEQ-F03drFq3W0dPtzEhXWHC1vWxSdSlivatS11o2vog9ejXKX7_IB00Wu2Tq4diU27Q99R1XePjX_CaXAS37XBy5DH5mD-8zxZZ8fL4NLsvssi16rOylAClzwNC7sEwXXEMEjXmIEDlTGnjIDhRehV80OAEq6yWFjiTCJWAMbk97EZEXO7aWLt2vzx-BL-fHlff</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Shung Han Cho</creator><creator>Sangjin Hong</creator><creator>We-Duke Cho</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Homographic line generation and transformation technique for dynamic object association</title><author>Shung Han Cho ; Sangjin Hong ; We-Duke Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bb433bc6fe36c3807d1ef4e7e6323560578a3fa2bc5fcf73a20d97493104e3d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustic distortion</topic><topic>Acoustic noise</topic><topic>Acoustic sensors</topic><topic>Application software</topic><topic>Cameras</topic><topic>Labeling</topic><topic>Lenses</topic><topic>Reverberation</topic><topic>Surveillance</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Shung Han Cho</creatorcontrib><creatorcontrib>Sangjin Hong</creatorcontrib><creatorcontrib>We-Duke Cho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shung Han Cho</au><au>Sangjin Hong</au><au>We-Duke Cho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Homographic line generation and transformation technique for dynamic object association</atitle><btitle>2008 IEEE Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>273</spage><epage>278</epage><pages>273-278</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>9781424423750</isbn><isbn>1424423759</isbn><eisbn>1424423767</eisbn><eisbn>9781424423767</eisbn><abstract>Object association among multiple cameras is an important capability for maintaining consistent view of surroundings. This is necessary in many applications such as tracking and surveillance. In this paper, we present a dynamic homographic line generation technique supporting the camera movement for object association in the multiple visual sensors network. The conventional method uses the globally defined homographic lines or the feature based methods for the object association. However, these methods restrict the camera movement (i.e., panning, tilting and zooming) required for efficient and effective association in the autonomous surveillance system. The proposed method uses the table based compensation for non-ideal camera parameters to support the camera movement. Lastly, two possible application models are simulated with the proposed technique.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2008.4685492</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2008 IEEE Workshop on Machine Learning for Signal Processing, 2008, p.273-278
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_4685492
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic distortion
Acoustic noise
Acoustic sensors
Application software
Cameras
Labeling
Lenses
Reverberation
Surveillance
Target tracking
title Homographic line generation and transformation technique for dynamic object association
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Homographic%20line%20generation%20and%20transformation%20technique%20for%20dynamic%20object%20association&rft.btitle=2008%20IEEE%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Shung%20Han%20Cho&rft.date=2008-10&rft.spage=273&rft.epage=278&rft.pages=273-278&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=9781424423750&rft.isbn_list=1424423759&rft_id=info:doi/10.1109/MLSP.2008.4685492&rft_dat=%3Cieee_6IE%3E4685492%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424423767&rft.eisbn_list=9781424423767&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4685492&rfr_iscdi=true