Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function
In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, whic...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | |
container_start_page | 233 |
container_title | |
container_volume | |
creator | Tohme, M. Lengelle, R. Boeijinga, P. |
description | In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity. |
doi_str_mv | 10.1109/MLSP.2008.4685485 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4685485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685485</ieee_id><sourcerecordid>oai_HAL_hal_02304403v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h209t-3cf12a5e8463e43bfdd817c3dec54e33af9d095850fbc3db80338334052b42ab3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxeM_cM59APElrz50JrnJmvo2hjqhojAF30qaJmuka0rTKf0Afm87Nr0vB879ce7hInRFyZRSktw-p6vXKSNETvlMCi7FEbqgnHHOIJ7Fx2g0qIwSJj9O0CSJ5d9OkFM0okLQiAlOz9EkhE8yDBdAEzJCP4tKheCs06pzvsbe4ib0uvRd6xuncdFu1wG7GitcunWJC7cxdRhIVeHQKG3u8MpvDG5aU7mNq1Xb49aEbdUFPMSVfeO70gQXcOhU7irX9VjVBW78t2mx3dZ6d_YSnVlVBTM56Bi9P9y_LZZR-vL4tJinUclI0kWgLWVKGMlnYDjktigkjTUURgtuAJRNCpIIKYjNBzeXBEACcCJYzpnKYYxu9rmlqrKmdZuhbuaVy5bzNNt5hAHhnMAXHdjrPeuMMf_w4fvwC-D6duU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tohme, M. ; Lengelle, R. ; Boeijinga, P.</creator><creatorcontrib>Tohme, M. ; Lengelle, R. ; Boeijinga, P.</creatorcontrib><description>In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 9781424423750</identifier><identifier>ISBN: 1424423759</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 1424423767</identifier><identifier>EISBN: 9781424423767</identifier><identifier>DOI: 10.1109/MLSP.2008.4685485</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Detectors ; Drugs ; EEG ; Electroencephalography ; Engineering Sciences ; Enterprise resource planning ; ERP ; Error probability ; Hypothesis test ; Pattern recognition ; Psychology ; Signal and Image processing ; Space technology ; Stability ; Testing</subject><ispartof>2008 IEEE Workshop on Machine Learning for Signal Processing, 2008, p.233-238</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4685485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02304403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tohme, M.</creatorcontrib><creatorcontrib>Lengelle, R.</creatorcontrib><creatorcontrib>Boeijinga, P.</creatorcontrib><title>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</title><title>2008 IEEE Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity.</description><subject>Classification</subject><subject>Detectors</subject><subject>Drugs</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Engineering Sciences</subject><subject>Enterprise resource planning</subject><subject>ERP</subject><subject>Error probability</subject><subject>Hypothesis test</subject><subject>Pattern recognition</subject><subject>Psychology</subject><subject>Signal and Image processing</subject><subject>Space technology</subject><subject>Stability</subject><subject>Testing</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781424423750</isbn><isbn>1424423759</isbn><isbn>1424423767</isbn><isbn>9781424423767</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxeM_cM59APElrz50JrnJmvo2hjqhojAF30qaJmuka0rTKf0Afm87Nr0vB879ce7hInRFyZRSktw-p6vXKSNETvlMCi7FEbqgnHHOIJ7Fx2g0qIwSJj9O0CSJ5d9OkFM0okLQiAlOz9EkhE8yDBdAEzJCP4tKheCs06pzvsbe4ib0uvRd6xuncdFu1wG7GitcunWJC7cxdRhIVeHQKG3u8MpvDG5aU7mNq1Xb49aEbdUFPMSVfeO70gQXcOhU7irX9VjVBW78t2mx3dZ6d_YSnVlVBTM56Bi9P9y_LZZR-vL4tJinUclI0kWgLWVKGMlnYDjktigkjTUURgtuAJRNCpIIKYjNBzeXBEACcCJYzpnKYYxu9rmlqrKmdZuhbuaVy5bzNNt5hAHhnMAXHdjrPeuMMf_w4fvwC-D6duU</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Tohme, M.</creator><creator>Lengelle, R.</creator><creator>Boeijinga, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope></search><sort><creationdate>200810</creationdate><title>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</title><author>Tohme, M. ; Lengelle, R. ; Boeijinga, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h209t-3cf12a5e8463e43bfdd817c3dec54e33af9d095850fbc3db80338334052b42ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classification</topic><topic>Detectors</topic><topic>Drugs</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Engineering Sciences</topic><topic>Enterprise resource planning</topic><topic>ERP</topic><topic>Error probability</topic><topic>Hypothesis test</topic><topic>Pattern recognition</topic><topic>Psychology</topic><topic>Signal and Image processing</topic><topic>Space technology</topic><topic>Stability</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tohme, M.</creatorcontrib><creatorcontrib>Lengelle, R.</creatorcontrib><creatorcontrib>Boeijinga, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tohme, M.</au><au>Lengelle, R.</au><au>Boeijinga, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</atitle><btitle>2008 IEEE Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>233</spage><epage>238</epage><pages>233-238</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>9781424423750</isbn><isbn>1424423759</isbn><eisbn>1424423767</eisbn><eisbn>9781424423767</eisbn><abstract>In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2008.4685485</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-2541 |
ispartof | 2008 IEEE Workshop on Machine Learning for Signal Processing, 2008, p.233-238 |
issn | 1551-2541 2378-928X |
language | eng |
recordid | cdi_ieee_primary_4685485 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification Detectors Drugs EEG Electroencephalography Engineering Sciences Enterprise resource planning ERP Error probability Hypothesis test Pattern recognition Psychology Signal and Image processing Space technology Stability Testing |
title | Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20psychotropic%20drugs%20in%20a%20high%20dimensional%20space:%20Some%20preliminary%20results%20on%20hypothesis%20stability%20and%20power%20function&rft.btitle=2008%20IEEE%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Tohme,%20M.&rft.date=2008-10&rft.spage=233&rft.epage=238&rft.pages=233-238&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=9781424423750&rft.isbn_list=1424423759&rft_id=info:doi/10.1109/MLSP.2008.4685485&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_02304403v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424423767&rft.eisbn_list=9781424423767&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4685485&rfr_iscdi=true |