Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function

In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tohme, M., Lengelle, R., Boeijinga, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue
container_start_page 233
container_title
container_volume
creator Tohme, M.
Lengelle, R.
Boeijinga, P.
description In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity.
doi_str_mv 10.1109/MLSP.2008.4685485
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4685485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685485</ieee_id><sourcerecordid>oai_HAL_hal_02304403v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h209t-3cf12a5e8463e43bfdd817c3dec54e33af9d095850fbc3db80338334052b42ab3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxeM_cM59APElrz50JrnJmvo2hjqhojAF30qaJmuka0rTKf0Afm87Nr0vB879ce7hInRFyZRSktw-p6vXKSNETvlMCi7FEbqgnHHOIJ7Fx2g0qIwSJj9O0CSJ5d9OkFM0okLQiAlOz9EkhE8yDBdAEzJCP4tKheCs06pzvsbe4ib0uvRd6xuncdFu1wG7GitcunWJC7cxdRhIVeHQKG3u8MpvDG5aU7mNq1Xb49aEbdUFPMSVfeO70gQXcOhU7irX9VjVBW78t2mx3dZ6d_YSnVlVBTM56Bi9P9y_LZZR-vL4tJinUclI0kWgLWVKGMlnYDjktigkjTUURgtuAJRNCpIIKYjNBzeXBEACcCJYzpnKYYxu9rmlqrKmdZuhbuaVy5bzNNt5hAHhnMAXHdjrPeuMMf_w4fvwC-D6duU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tohme, M. ; Lengelle, R. ; Boeijinga, P.</creator><creatorcontrib>Tohme, M. ; Lengelle, R. ; Boeijinga, P.</creatorcontrib><description>In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 9781424423750</identifier><identifier>ISBN: 1424423759</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 1424423767</identifier><identifier>EISBN: 9781424423767</identifier><identifier>DOI: 10.1109/MLSP.2008.4685485</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Detectors ; Drugs ; EEG ; Electroencephalography ; Engineering Sciences ; Enterprise resource planning ; ERP ; Error probability ; Hypothesis test ; Pattern recognition ; Psychology ; Signal and Image processing ; Space technology ; Stability ; Testing</subject><ispartof>2008 IEEE Workshop on Machine Learning for Signal Processing, 2008, p.233-238</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4685485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02304403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tohme, M.</creatorcontrib><creatorcontrib>Lengelle, R.</creatorcontrib><creatorcontrib>Boeijinga, P.</creatorcontrib><title>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</title><title>2008 IEEE Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity.</description><subject>Classification</subject><subject>Detectors</subject><subject>Drugs</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Engineering Sciences</subject><subject>Enterprise resource planning</subject><subject>ERP</subject><subject>Error probability</subject><subject>Hypothesis test</subject><subject>Pattern recognition</subject><subject>Psychology</subject><subject>Signal and Image processing</subject><subject>Space technology</subject><subject>Stability</subject><subject>Testing</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781424423750</isbn><isbn>1424423759</isbn><isbn>1424423767</isbn><isbn>9781424423767</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxeM_cM59APElrz50JrnJmvo2hjqhojAF30qaJmuka0rTKf0Afm87Nr0vB879ce7hInRFyZRSktw-p6vXKSNETvlMCi7FEbqgnHHOIJ7Fx2g0qIwSJj9O0CSJ5d9OkFM0okLQiAlOz9EkhE8yDBdAEzJCP4tKheCs06pzvsbe4ib0uvRd6xuncdFu1wG7GitcunWJC7cxdRhIVeHQKG3u8MpvDG5aU7mNq1Xb49aEbdUFPMSVfeO70gQXcOhU7irX9VjVBW78t2mx3dZ6d_YSnVlVBTM56Bi9P9y_LZZR-vL4tJinUclI0kWgLWVKGMlnYDjktigkjTUURgtuAJRNCpIIKYjNBzeXBEACcCJYzpnKYYxu9rmlqrKmdZuhbuaVy5bzNNt5hAHhnMAXHdjrPeuMMf_w4fvwC-D6duU</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Tohme, M.</creator><creator>Lengelle, R.</creator><creator>Boeijinga, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope></search><sort><creationdate>200810</creationdate><title>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</title><author>Tohme, M. ; Lengelle, R. ; Boeijinga, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h209t-3cf12a5e8463e43bfdd817c3dec54e33af9d095850fbc3db80338334052b42ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classification</topic><topic>Detectors</topic><topic>Drugs</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Engineering Sciences</topic><topic>Enterprise resource planning</topic><topic>ERP</topic><topic>Error probability</topic><topic>Hypothesis test</topic><topic>Pattern recognition</topic><topic>Psychology</topic><topic>Signal and Image processing</topic><topic>Space technology</topic><topic>Stability</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tohme, M.</creatorcontrib><creatorcontrib>Lengelle, R.</creatorcontrib><creatorcontrib>Boeijinga, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tohme, M.</au><au>Lengelle, R.</au><au>Boeijinga, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function</atitle><btitle>2008 IEEE Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>233</spage><epage>238</epage><pages>233-238</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>9781424423750</isbn><isbn>1424423759</isbn><eisbn>1424423767</eisbn><eisbn>9781424423767</eisbn><abstract>In this paper, we propose an approach to classify psychotropic drugs from the events related potential (ERP) signals using the P300 components. The difficulties of the problem reside essentially in the fact that traditional methods do not apply when observations are in a high dimensional space, which is a common case in biomedical engineering. Our objective is to propose new hypothesis tests that give p-values reflecting the reality of the efficacy criterion of drugs. Our test is based on a pattern recognition approach. We first study the stability of different training algorithms. We then exhibit a relationship between stability and power functions of the corresponding tests. We finally apply our method to test the efficacy of Lorazepam versus placebo to modify generators of brain activity.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2008.4685485</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2008 IEEE Workshop on Machine Learning for Signal Processing, 2008, p.233-238
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_4685485
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification
Detectors
Drugs
EEG
Electroencephalography
Engineering Sciences
Enterprise resource planning
ERP
Error probability
Hypothesis test
Pattern recognition
Psychology
Signal and Image processing
Space technology
Stability
Testing
title Classification of psychotropic drugs in a high dimensional space: Some preliminary results on hypothesis stability and power function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20psychotropic%20drugs%20in%20a%20high%20dimensional%20space:%20Some%20preliminary%20results%20on%20hypothesis%20stability%20and%20power%20function&rft.btitle=2008%20IEEE%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Tohme,%20M.&rft.date=2008-10&rft.spage=233&rft.epage=238&rft.pages=233-238&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=9781424423750&rft.isbn_list=1424423759&rft_id=info:doi/10.1109/MLSP.2008.4685485&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_02304403v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424423767&rft.eisbn_list=9781424423767&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4685485&rfr_iscdi=true