Face Recognition Based on the Phase Spectrum of Local Normalized Image

This paper proposes a robust faces recognition method based on the phase spectrum features of the local normalized image. The principal components analysis (PCA) and the support vector machine (SVM) are used in the classification stage. We evaluate how the proposed method is robust to illumination,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Olivares-Mercado, J., Hotta, K., Takahashi, H., Perez-Meana, H., Sanchez-Perez, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue
container_start_page 123
container_title
container_volume
creator Olivares-Mercado, J.
Hotta, K.
Takahashi, H.
Perez-Meana, H.
Sanchez-Perez, G.
description This paper proposes a robust faces recognition method based on the phase spectrum features of the local normalized image. The principal components analysis (PCA) and the support vector machine (SVM) are used in the classification stage. We evaluate how the proposed method is robust to illumination, occlusion and expressions using "AR face database", which includes the face images of 109 subjects (60 males and 49 females) under illumination changes, expression changes and partial occlusion. The proposed method provides results with a correct recognition rate more than 95.5%.
doi_str_mv 10.1109/MICAI.2008.46
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4682453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682453</ieee_id><sourcerecordid>4682453</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e4e4ce28b94671e49a4fbd992c9722f694cf81ed008abb10aa3bd04b345540383</originalsourceid><addsrcrecordid>eNotTslOwzAUtIQqQUuPnLj4BxK8vCzvCBWBSGERy7mynZfWKKmrJBzg6zGCucyi0WgYu5AilVLg1UO9ua5TJUSZQn7ClqLIMdMAEhZs-RujBkRxytbT9CEiNOpCyTNWVcYRfyEXdgc_-3DgN2ailkcx74k_76Pjr0dy8_g58NDxJjjT88cwDqb337FZD2ZH52zRmX6i9T-v2Ht1-7a5T5qnu3itSbwssjkhIHCkSouQF5IADXS2RVQOC6W6HMF1paQ2HjbWSmGMtq0AqyHLQOhSr9jl364nou1x9IMZv7aQlwoyrX8AnbBKCQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face Recognition Based on the Phase Spectrum of Local Normalized Image</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Olivares-Mercado, J. ; Hotta, K. ; Takahashi, H. ; Perez-Meana, H. ; Sanchez-Perez, G.</creator><creatorcontrib>Olivares-Mercado, J. ; Hotta, K. ; Takahashi, H. ; Perez-Meana, H. ; Sanchez-Perez, G.</creatorcontrib><description>This paper proposes a robust faces recognition method based on the phase spectrum features of the local normalized image. The principal components analysis (PCA) and the support vector machine (SVM) are used in the classification stage. We evaluate how the proposed method is robust to illumination, occlusion and expressions using "AR face database", which includes the face images of 109 subjects (60 males and 49 females) under illumination changes, expression changes and partial occlusion. The proposed method provides results with a correct recognition rate more than 95.5%.</description><identifier>ISBN: 0769534414</identifier><identifier>ISBN: 9780769534411</identifier><identifier>DOI: 10.1109/MICAI.2008.46</identifier><identifier>LCCN: 2008934990</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Character recognition ; Data mining ; Face recognition ; Image recognition ; Lighting ; Local Normalized Image ; PCA ; Phase Spectrum ; Principal component analysis ; Robustness ; Support vector machine classification ; Support vector machines ; SVM</subject><ispartof>2008 Seventh Mexican International Conference on Artificial Intelligence, 2008, p.123-127</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Olivares-Mercado, J.</creatorcontrib><creatorcontrib>Hotta, K.</creatorcontrib><creatorcontrib>Takahashi, H.</creatorcontrib><creatorcontrib>Perez-Meana, H.</creatorcontrib><creatorcontrib>Sanchez-Perez, G.</creatorcontrib><title>Face Recognition Based on the Phase Spectrum of Local Normalized Image</title><title>2008 Seventh Mexican International Conference on Artificial Intelligence</title><addtitle>MICAI</addtitle><description>This paper proposes a robust faces recognition method based on the phase spectrum features of the local normalized image. The principal components analysis (PCA) and the support vector machine (SVM) are used in the classification stage. We evaluate how the proposed method is robust to illumination, occlusion and expressions using "AR face database", which includes the face images of 109 subjects (60 males and 49 females) under illumination changes, expression changes and partial occlusion. The proposed method provides results with a correct recognition rate more than 95.5%.</description><subject>Biometrics</subject><subject>Character recognition</subject><subject>Data mining</subject><subject>Face recognition</subject><subject>Image recognition</subject><subject>Lighting</subject><subject>Local Normalized Image</subject><subject>PCA</subject><subject>Phase Spectrum</subject><subject>Principal component analysis</subject><subject>Robustness</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>SVM</subject><isbn>0769534414</isbn><isbn>9780769534411</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTslOwzAUtIQqQUuPnLj4BxK8vCzvCBWBSGERy7mynZfWKKmrJBzg6zGCucyi0WgYu5AilVLg1UO9ua5TJUSZQn7ClqLIMdMAEhZs-RujBkRxytbT9CEiNOpCyTNWVcYRfyEXdgc_-3DgN2ailkcx74k_76Pjr0dy8_g58NDxJjjT88cwDqb337FZD2ZH52zRmX6i9T-v2Ht1-7a5T5qnu3itSbwssjkhIHCkSouQF5IADXS2RVQOC6W6HMF1paQ2HjbWSmGMtq0AqyHLQOhSr9jl364nou1x9IMZv7aQlwoyrX8AnbBKCQ</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Olivares-Mercado, J.</creator><creator>Hotta, K.</creator><creator>Takahashi, H.</creator><creator>Perez-Meana, H.</creator><creator>Sanchez-Perez, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Face Recognition Based on the Phase Spectrum of Local Normalized Image</title><author>Olivares-Mercado, J. ; Hotta, K. ; Takahashi, H. ; Perez-Meana, H. ; Sanchez-Perez, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e4e4ce28b94671e49a4fbd992c9722f694cf81ed008abb10aa3bd04b345540383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biometrics</topic><topic>Character recognition</topic><topic>Data mining</topic><topic>Face recognition</topic><topic>Image recognition</topic><topic>Lighting</topic><topic>Local Normalized Image</topic><topic>PCA</topic><topic>Phase Spectrum</topic><topic>Principal component analysis</topic><topic>Robustness</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Olivares-Mercado, J.</creatorcontrib><creatorcontrib>Hotta, K.</creatorcontrib><creatorcontrib>Takahashi, H.</creatorcontrib><creatorcontrib>Perez-Meana, H.</creatorcontrib><creatorcontrib>Sanchez-Perez, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olivares-Mercado, J.</au><au>Hotta, K.</au><au>Takahashi, H.</au><au>Perez-Meana, H.</au><au>Sanchez-Perez, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face Recognition Based on the Phase Spectrum of Local Normalized Image</atitle><btitle>2008 Seventh Mexican International Conference on Artificial Intelligence</btitle><stitle>MICAI</stitle><date>2008-10</date><risdate>2008</risdate><spage>123</spage><epage>127</epage><pages>123-127</pages><isbn>0769534414</isbn><isbn>9780769534411</isbn><abstract>This paper proposes a robust faces recognition method based on the phase spectrum features of the local normalized image. The principal components analysis (PCA) and the support vector machine (SVM) are used in the classification stage. We evaluate how the proposed method is robust to illumination, occlusion and expressions using "AR face database", which includes the face images of 109 subjects (60 males and 49 females) under illumination changes, expression changes and partial occlusion. The proposed method provides results with a correct recognition rate more than 95.5%.</abstract><pub>IEEE</pub><doi>10.1109/MICAI.2008.46</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769534414
ispartof 2008 Seventh Mexican International Conference on Artificial Intelligence, 2008, p.123-127
issn
language eng
recordid cdi_ieee_primary_4682453
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biometrics
Character recognition
Data mining
Face recognition
Image recognition
Lighting
Local Normalized Image
PCA
Phase Spectrum
Principal component analysis
Robustness
Support vector machine classification
Support vector machines
SVM
title Face Recognition Based on the Phase Spectrum of Local Normalized Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20Recognition%20Based%20on%20the%20Phase%20Spectrum%20of%20Local%20Normalized%20Image&rft.btitle=2008%20Seventh%20Mexican%20International%20Conference%20on%20Artificial%20Intelligence&rft.au=Olivares-Mercado,%20J.&rft.date=2008-10&rft.spage=123&rft.epage=127&rft.pages=123-127&rft.isbn=0769534414&rft.isbn_list=9780769534411&rft_id=info:doi/10.1109/MICAI.2008.46&rft_dat=%3Cieee_6IE%3E4682453%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4682453&rfr_iscdi=true