Divide & Conquer Classification and Optimization by Genetic Algorithm
In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each l...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 863 |
---|---|
container_issue | |
container_start_page | 858 |
container_title | |
container_volume | 2 |
creator | Parvin, H. Alizadeh, H. Moshki, M. Minaei-Bidgoli, B. Mozayani, N. |
description | In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset. |
doi_str_mv | 10.1109/ICCIT.2008.335 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4682353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682353</ieee_id><sourcerecordid>4682353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-90c520444bbc1d2e38184fbd82de210bd793dc2be7edc2cceb9bbbd53e8c1cb53</originalsourceid><addsrcrecordid>eNotzDtPwzAUQGFLqBK0dGVh8cSWcP2K7bEypUSq1KXMVWzfgFEeJQlI5ddDVaYjfcMh5I5BzhjYx9K5cp9zAJMLoa7IHHRhlZCg5YzMz265kcJek-U4fgAAs4Vmmt2Q9VP6ThHpA3V99_mFA3VNNY6pTqGaUt_Rqot0d5xSm34u4E90gx1OKdBV89YPaXpvb8msrpoRl_9dkNfn9d69ZNvdpnSrbRY4hymzEBQHKaX3gUWOwjAjax8Nj8gZ-KitiIF71PiXENBb731UAk1gwSuxIPeXb0LEw3FIbTWcDrIwXCghfgEf6Ev-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Divide & Conquer Classification and Optimization by Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Parvin, H. ; Alizadeh, H. ; Moshki, M. ; Minaei-Bidgoli, B. ; Mozayani, N.</creator><creatorcontrib>Parvin, H. ; Alizadeh, H. ; Moshki, M. ; Minaei-Bidgoli, B. ; Mozayani, N.</creatorcontrib><description>In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.</description><identifier>ISBN: 0769534074</identifier><identifier>ISBN: 9780769534077</identifier><identifier>DOI: 10.1109/ICCIT.2008.335</identifier><identifier>LCCN: 2008928439</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binary Classification ; Binary trees ; Classification tree analysis ; Combinational Classification ; Data mining ; Decision trees ; Genetic algorithms ; Genetic engineering ; Humans ; Information technology ; Nearest neighbor searches ; Neural Network Ensembles ; Pattern recognition ; Tree Classification</subject><ispartof>2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.858-863</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-90c520444bbc1d2e38184fbd82de210bd793dc2be7edc2cceb9bbbd53e8c1cb53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parvin, H.</creatorcontrib><creatorcontrib>Alizadeh, H.</creatorcontrib><creatorcontrib>Moshki, M.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><creatorcontrib>Mozayani, N.</creatorcontrib><title>Divide & Conquer Classification and Optimization by Genetic Algorithm</title><title>2008 Third International Conference on Convergence and Hybrid Information Technology</title><addtitle>ICCIT</addtitle><description>In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.</description><subject>Binary Classification</subject><subject>Binary trees</subject><subject>Classification tree analysis</subject><subject>Combinational Classification</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Information technology</subject><subject>Nearest neighbor searches</subject><subject>Neural Network Ensembles</subject><subject>Pattern recognition</subject><subject>Tree Classification</subject><isbn>0769534074</isbn><isbn>9780769534077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzDtPwzAUQGFLqBK0dGVh8cSWcP2K7bEypUSq1KXMVWzfgFEeJQlI5ddDVaYjfcMh5I5BzhjYx9K5cp9zAJMLoa7IHHRhlZCg5YzMz265kcJek-U4fgAAs4Vmmt2Q9VP6ThHpA3V99_mFA3VNNY6pTqGaUt_Rqot0d5xSm34u4E90gx1OKdBV89YPaXpvb8msrpoRl_9dkNfn9d69ZNvdpnSrbRY4hymzEBQHKaX3gUWOwjAjax8Nj8gZ-KitiIF71PiXENBb731UAk1gwSuxIPeXb0LEw3FIbTWcDrIwXCghfgEf6Ev-</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Parvin, H.</creator><creator>Alizadeh, H.</creator><creator>Moshki, M.</creator><creator>Minaei-Bidgoli, B.</creator><creator>Mozayani, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Divide & Conquer Classification and Optimization by Genetic Algorithm</title><author>Parvin, H. ; Alizadeh, H. ; Moshki, M. ; Minaei-Bidgoli, B. ; Mozayani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-90c520444bbc1d2e38184fbd82de210bd793dc2be7edc2cceb9bbbd53e8c1cb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binary Classification</topic><topic>Binary trees</topic><topic>Classification tree analysis</topic><topic>Combinational Classification</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Information technology</topic><topic>Nearest neighbor searches</topic><topic>Neural Network Ensembles</topic><topic>Pattern recognition</topic><topic>Tree Classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Parvin, H.</creatorcontrib><creatorcontrib>Alizadeh, H.</creatorcontrib><creatorcontrib>Moshki, M.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><creatorcontrib>Mozayani, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parvin, H.</au><au>Alizadeh, H.</au><au>Moshki, M.</au><au>Minaei-Bidgoli, B.</au><au>Mozayani, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Divide & Conquer Classification and Optimization by Genetic Algorithm</atitle><btitle>2008 Third International Conference on Convergence and Hybrid Information Technology</btitle><stitle>ICCIT</stitle><date>2008-11</date><risdate>2008</risdate><volume>2</volume><spage>858</spage><epage>863</epage><pages>858-863</pages><isbn>0769534074</isbn><isbn>9780769534077</isbn><abstract>In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICCIT.2008.335</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769534074 |
ispartof | 2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.858-863 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4682353 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Binary Classification Binary trees Classification tree analysis Combinational Classification Data mining Decision trees Genetic algorithms Genetic engineering Humans Information technology Nearest neighbor searches Neural Network Ensembles Pattern recognition Tree Classification |
title | Divide & Conquer Classification and Optimization by Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Divide%20&%20Conquer%20Classification%20and%20Optimization%20by%20Genetic%20Algorithm&rft.btitle=2008%20Third%20International%20Conference%20on%20Convergence%20and%20Hybrid%20Information%20Technology&rft.au=Parvin,%20H.&rft.date=2008-11&rft.volume=2&rft.spage=858&rft.epage=863&rft.pages=858-863&rft.isbn=0769534074&rft.isbn_list=9780769534077&rft_id=info:doi/10.1109/ICCIT.2008.335&rft_dat=%3Cieee_6IE%3E4682353%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4682353&rfr_iscdi=true |