Divide & Conquer Classification and Optimization by Genetic Algorithm

In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Parvin, H., Alizadeh, H., Moshki, M., Minaei-Bidgoli, B., Mozayani, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue
container_start_page 858
container_title
container_volume 2
creator Parvin, H.
Alizadeh, H.
Moshki, M.
Minaei-Bidgoli, B.
Mozayani, N.
description In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.
doi_str_mv 10.1109/ICCIT.2008.335
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4682353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682353</ieee_id><sourcerecordid>4682353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-90c520444bbc1d2e38184fbd82de210bd793dc2be7edc2cceb9bbbd53e8c1cb53</originalsourceid><addsrcrecordid>eNotzDtPwzAUQGFLqBK0dGVh8cSWcP2K7bEypUSq1KXMVWzfgFEeJQlI5ddDVaYjfcMh5I5BzhjYx9K5cp9zAJMLoa7IHHRhlZCg5YzMz265kcJek-U4fgAAs4Vmmt2Q9VP6ThHpA3V99_mFA3VNNY6pTqGaUt_Rqot0d5xSm34u4E90gx1OKdBV89YPaXpvb8msrpoRl_9dkNfn9d69ZNvdpnSrbRY4hymzEBQHKaX3gUWOwjAjax8Nj8gZ-KitiIF71PiXENBb731UAk1gwSuxIPeXb0LEw3FIbTWcDrIwXCghfgEf6Ev-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Divide &amp; Conquer Classification and Optimization by Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Parvin, H. ; Alizadeh, H. ; Moshki, M. ; Minaei-Bidgoli, B. ; Mozayani, N.</creator><creatorcontrib>Parvin, H. ; Alizadeh, H. ; Moshki, M. ; Minaei-Bidgoli, B. ; Mozayani, N.</creatorcontrib><description>In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.</description><identifier>ISBN: 0769534074</identifier><identifier>ISBN: 9780769534077</identifier><identifier>DOI: 10.1109/ICCIT.2008.335</identifier><identifier>LCCN: 2008928439</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binary Classification ; Binary trees ; Classification tree analysis ; Combinational Classification ; Data mining ; Decision trees ; Genetic algorithms ; Genetic engineering ; Humans ; Information technology ; Nearest neighbor searches ; Neural Network Ensembles ; Pattern recognition ; Tree Classification</subject><ispartof>2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.858-863</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-90c520444bbc1d2e38184fbd82de210bd793dc2be7edc2cceb9bbbd53e8c1cb53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parvin, H.</creatorcontrib><creatorcontrib>Alizadeh, H.</creatorcontrib><creatorcontrib>Moshki, M.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><creatorcontrib>Mozayani, N.</creatorcontrib><title>Divide &amp; Conquer Classification and Optimization by Genetic Algorithm</title><title>2008 Third International Conference on Convergence and Hybrid Information Technology</title><addtitle>ICCIT</addtitle><description>In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.</description><subject>Binary Classification</subject><subject>Binary trees</subject><subject>Classification tree analysis</subject><subject>Combinational Classification</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Information technology</subject><subject>Nearest neighbor searches</subject><subject>Neural Network Ensembles</subject><subject>Pattern recognition</subject><subject>Tree Classification</subject><isbn>0769534074</isbn><isbn>9780769534077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzDtPwzAUQGFLqBK0dGVh8cSWcP2K7bEypUSq1KXMVWzfgFEeJQlI5ddDVaYjfcMh5I5BzhjYx9K5cp9zAJMLoa7IHHRhlZCg5YzMz265kcJek-U4fgAAs4Vmmt2Q9VP6ThHpA3V99_mFA3VNNY6pTqGaUt_Rqot0d5xSm34u4E90gx1OKdBV89YPaXpvb8msrpoRl_9dkNfn9d69ZNvdpnSrbRY4hymzEBQHKaX3gUWOwjAjax8Nj8gZ-KitiIF71PiXENBb731UAk1gwSuxIPeXb0LEw3FIbTWcDrIwXCghfgEf6Ev-</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Parvin, H.</creator><creator>Alizadeh, H.</creator><creator>Moshki, M.</creator><creator>Minaei-Bidgoli, B.</creator><creator>Mozayani, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Divide &amp; Conquer Classification and Optimization by Genetic Algorithm</title><author>Parvin, H. ; Alizadeh, H. ; Moshki, M. ; Minaei-Bidgoli, B. ; Mozayani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-90c520444bbc1d2e38184fbd82de210bd793dc2be7edc2cceb9bbbd53e8c1cb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binary Classification</topic><topic>Binary trees</topic><topic>Classification tree analysis</topic><topic>Combinational Classification</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Information technology</topic><topic>Nearest neighbor searches</topic><topic>Neural Network Ensembles</topic><topic>Pattern recognition</topic><topic>Tree Classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Parvin, H.</creatorcontrib><creatorcontrib>Alizadeh, H.</creatorcontrib><creatorcontrib>Moshki, M.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><creatorcontrib>Mozayani, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parvin, H.</au><au>Alizadeh, H.</au><au>Moshki, M.</au><au>Minaei-Bidgoli, B.</au><au>Mozayani, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Divide &amp; Conquer Classification and Optimization by Genetic Algorithm</atitle><btitle>2008 Third International Conference on Convergence and Hybrid Information Technology</btitle><stitle>ICCIT</stitle><date>2008-11</date><risdate>2008</risdate><volume>2</volume><spage>858</spage><epage>863</epage><pages>858-863</pages><isbn>0769534074</isbn><isbn>9780769534077</isbn><abstract>In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICCIT.2008.335</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769534074
ispartof 2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.858-863
issn
language eng
recordid cdi_ieee_primary_4682353
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Binary Classification
Binary trees
Classification tree analysis
Combinational Classification
Data mining
Decision trees
Genetic algorithms
Genetic engineering
Humans
Information technology
Nearest neighbor searches
Neural Network Ensembles
Pattern recognition
Tree Classification
title Divide & Conquer Classification and Optimization by Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Divide%20&%20Conquer%20Classification%20and%20Optimization%20by%20Genetic%20Algorithm&rft.btitle=2008%20Third%20International%20Conference%20on%20Convergence%20and%20Hybrid%20Information%20Technology&rft.au=Parvin,%20H.&rft.date=2008-11&rft.volume=2&rft.spage=858&rft.epage=863&rft.pages=858-863&rft.isbn=0769534074&rft.isbn_list=9780769534077&rft_id=info:doi/10.1109/ICCIT.2008.335&rft_dat=%3Cieee_6IE%3E4682353%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4682353&rfr_iscdi=true