A Novel Compound Approach for Iris Segmentation
With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 661 |
---|---|
container_issue | |
container_start_page | 657 |
container_title | |
container_volume | 2 |
creator | Ranjzad, H. Ebrahimnezhad, H. Ebrahimi, A. |
description | With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods. |
doi_str_mv | 10.1109/ICCIT.2008.176 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4682319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682319</ieee_id><sourcerecordid>4682319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2010fbcdcbbba81c6ab5b6fe63854465f80987d59c0eb2c07fbd6f95ccd91953</originalsourceid><addsrcrecordid>eNotjstKw0AUQAekoK3dunEzP5D03sx7GYKPQNGFdV3mqZEmE5Io-PcqdXXgLA6HkBuEEhHMrm2a9lBWALpEJS_IGpQ0gnFQfEXWf95UmjNzSbbz_AEAaKRChVdkV9On_BVPtMn9mD-HQOtxnLL17zTlibZTN9OX-NbHYbFLl4drskr2NMftPzfk9f7u0DwW--eHtqn3RYdKLEWqACE5H7xzzmr00jrhZIqSacG5FEmD0SoI4yG6yoNKLshkhPfB4O_6htyeu12M8ThOXW-n7yOXumJo2A_lbUNS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Compound Approach for Iris Segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ranjzad, H. ; Ebrahimnezhad, H. ; Ebrahimi, A.</creator><creatorcontrib>Ranjzad, H. ; Ebrahimnezhad, H. ; Ebrahimi, A.</creatorcontrib><description>With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods.</description><identifier>ISBN: 0769534074</identifier><identifier>ISBN: 9780769534077</identifier><identifier>DOI: 10.1109/ICCIT.2008.176</identifier><identifier>LCCN: 2008928439</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active contours ; biometric identification ; Biometrics ; Curve fitting ; Data mining ; Eyelids ; Histograms ; Image edge detection ; Image segmentation ; Information technology ; Iris recognition ; iris segmentation ; non linear data fitting ; Ransac</subject><ispartof>2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.657-661</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ranjzad, H.</creatorcontrib><creatorcontrib>Ebrahimnezhad, H.</creatorcontrib><creatorcontrib>Ebrahimi, A.</creatorcontrib><title>A Novel Compound Approach for Iris Segmentation</title><title>2008 Third International Conference on Convergence and Hybrid Information Technology</title><addtitle>ICCIT</addtitle><description>With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods.</description><subject>Active contours</subject><subject>biometric identification</subject><subject>Biometrics</subject><subject>Curve fitting</subject><subject>Data mining</subject><subject>Eyelids</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information technology</subject><subject>Iris recognition</subject><subject>iris segmentation</subject><subject>non linear data fitting</subject><subject>Ransac</subject><isbn>0769534074</isbn><isbn>9780769534077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstKw0AUQAekoK3dunEzP5D03sx7GYKPQNGFdV3mqZEmE5Io-PcqdXXgLA6HkBuEEhHMrm2a9lBWALpEJS_IGpQ0gnFQfEXWf95UmjNzSbbz_AEAaKRChVdkV9On_BVPtMn9mD-HQOtxnLL17zTlibZTN9OX-NbHYbFLl4drskr2NMftPzfk9f7u0DwW--eHtqn3RYdKLEWqACE5H7xzzmr00jrhZIqSacG5FEmD0SoI4yG6yoNKLshkhPfB4O_6htyeu12M8ThOXW-n7yOXumJo2A_lbUNS</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Ranjzad, H.</creator><creator>Ebrahimnezhad, H.</creator><creator>Ebrahimi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>A Novel Compound Approach for Iris Segmentation</title><author>Ranjzad, H. ; Ebrahimnezhad, H. ; Ebrahimi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2010fbcdcbbba81c6ab5b6fe63854465f80987d59c0eb2c07fbd6f95ccd91953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Active contours</topic><topic>biometric identification</topic><topic>Biometrics</topic><topic>Curve fitting</topic><topic>Data mining</topic><topic>Eyelids</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information technology</topic><topic>Iris recognition</topic><topic>iris segmentation</topic><topic>non linear data fitting</topic><topic>Ransac</topic><toplevel>online_resources</toplevel><creatorcontrib>Ranjzad, H.</creatorcontrib><creatorcontrib>Ebrahimnezhad, H.</creatorcontrib><creatorcontrib>Ebrahimi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ranjzad, H.</au><au>Ebrahimnezhad, H.</au><au>Ebrahimi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Compound Approach for Iris Segmentation</atitle><btitle>2008 Third International Conference on Convergence and Hybrid Information Technology</btitle><stitle>ICCIT</stitle><date>2008-11</date><risdate>2008</risdate><volume>2</volume><spage>657</spage><epage>661</epage><pages>657-661</pages><isbn>0769534074</isbn><isbn>9780769534077</isbn><abstract>With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCIT.2008.176</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769534074 |
ispartof | 2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.657-661 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4682319 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Active contours biometric identification Biometrics Curve fitting Data mining Eyelids Histograms Image edge detection Image segmentation Information technology Iris recognition iris segmentation non linear data fitting Ransac |
title | A Novel Compound Approach for Iris Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Compound%20Approach%20for%20Iris%20Segmentation&rft.btitle=2008%20Third%20International%20Conference%20on%20Convergence%20and%20Hybrid%20Information%20Technology&rft.au=Ranjzad,%20H.&rft.date=2008-11&rft.volume=2&rft.spage=657&rft.epage=661&rft.pages=657-661&rft.isbn=0769534074&rft.isbn_list=9780769534077&rft_id=info:doi/10.1109/ICCIT.2008.176&rft_dat=%3Cieee_6IE%3E4682319%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4682319&rfr_iscdi=true |