A Novel Compound Approach for Iris Segmentation

With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ranjzad, H., Ebrahimnezhad, H., Ebrahimi, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue
container_start_page 657
container_title
container_volume 2
creator Ranjzad, H.
Ebrahimnezhad, H.
Ebrahimi, A.
description With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods.
doi_str_mv 10.1109/ICCIT.2008.176
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4682319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682319</ieee_id><sourcerecordid>4682319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2010fbcdcbbba81c6ab5b6fe63854465f80987d59c0eb2c07fbd6f95ccd91953</originalsourceid><addsrcrecordid>eNotjstKw0AUQAekoK3dunEzP5D03sx7GYKPQNGFdV3mqZEmE5Io-PcqdXXgLA6HkBuEEhHMrm2a9lBWALpEJS_IGpQ0gnFQfEXWf95UmjNzSbbz_AEAaKRChVdkV9On_BVPtMn9mD-HQOtxnLL17zTlibZTN9OX-NbHYbFLl4drskr2NMftPzfk9f7u0DwW--eHtqn3RYdKLEWqACE5H7xzzmr00jrhZIqSacG5FEmD0SoI4yG6yoNKLshkhPfB4O_6htyeu12M8ThOXW-n7yOXumJo2A_lbUNS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Compound Approach for Iris Segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ranjzad, H. ; Ebrahimnezhad, H. ; Ebrahimi, A.</creator><creatorcontrib>Ranjzad, H. ; Ebrahimnezhad, H. ; Ebrahimi, A.</creatorcontrib><description>With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods.</description><identifier>ISBN: 0769534074</identifier><identifier>ISBN: 9780769534077</identifier><identifier>DOI: 10.1109/ICCIT.2008.176</identifier><identifier>LCCN: 2008928439</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active contours ; biometric identification ; Biometrics ; Curve fitting ; Data mining ; Eyelids ; Histograms ; Image edge detection ; Image segmentation ; Information technology ; Iris recognition ; iris segmentation ; non linear data fitting ; Ransac</subject><ispartof>2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.657-661</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ranjzad, H.</creatorcontrib><creatorcontrib>Ebrahimnezhad, H.</creatorcontrib><creatorcontrib>Ebrahimi, A.</creatorcontrib><title>A Novel Compound Approach for Iris Segmentation</title><title>2008 Third International Conference on Convergence and Hybrid Information Technology</title><addtitle>ICCIT</addtitle><description>With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods.</description><subject>Active contours</subject><subject>biometric identification</subject><subject>Biometrics</subject><subject>Curve fitting</subject><subject>Data mining</subject><subject>Eyelids</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information technology</subject><subject>Iris recognition</subject><subject>iris segmentation</subject><subject>non linear data fitting</subject><subject>Ransac</subject><isbn>0769534074</isbn><isbn>9780769534077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstKw0AUQAekoK3dunEzP5D03sx7GYKPQNGFdV3mqZEmE5Io-PcqdXXgLA6HkBuEEhHMrm2a9lBWALpEJS_IGpQ0gnFQfEXWf95UmjNzSbbz_AEAaKRChVdkV9On_BVPtMn9mD-HQOtxnLL17zTlibZTN9OX-NbHYbFLl4drskr2NMftPzfk9f7u0DwW--eHtqn3RYdKLEWqACE5H7xzzmr00jrhZIqSacG5FEmD0SoI4yG6yoNKLshkhPfB4O_6htyeu12M8ThOXW-n7yOXumJo2A_lbUNS</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Ranjzad, H.</creator><creator>Ebrahimnezhad, H.</creator><creator>Ebrahimi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>A Novel Compound Approach for Iris Segmentation</title><author>Ranjzad, H. ; Ebrahimnezhad, H. ; Ebrahimi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2010fbcdcbbba81c6ab5b6fe63854465f80987d59c0eb2c07fbd6f95ccd91953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Active contours</topic><topic>biometric identification</topic><topic>Biometrics</topic><topic>Curve fitting</topic><topic>Data mining</topic><topic>Eyelids</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information technology</topic><topic>Iris recognition</topic><topic>iris segmentation</topic><topic>non linear data fitting</topic><topic>Ransac</topic><toplevel>online_resources</toplevel><creatorcontrib>Ranjzad, H.</creatorcontrib><creatorcontrib>Ebrahimnezhad, H.</creatorcontrib><creatorcontrib>Ebrahimi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ranjzad, H.</au><au>Ebrahimnezhad, H.</au><au>Ebrahimi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Compound Approach for Iris Segmentation</atitle><btitle>2008 Third International Conference on Convergence and Hybrid Information Technology</btitle><stitle>ICCIT</stitle><date>2008-11</date><risdate>2008</risdate><volume>2</volume><spage>657</spage><epage>661</epage><pages>657-661</pages><isbn>0769534074</isbn><isbn>9780769534077</isbn><abstract>With a growing emphasis on human identification, iris recognition as a biometric identification has recently received increasing attention. The first step in iris recognition is segmentation. In this paper a new segmentation approach is offered which does not use any information of color or texture as the segmentation cues. Instead, we use random sample consensus method to fit an ellipse or a circle to the edge information of iris boundary. The presented approach is robust against the iris texture variations and other trouble makers like eyelid and specularity effect in pupil area. The extracted curves in this method are more conformable with iris boundaries than the curves obtained by other conventional methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCIT.2008.176</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769534074
ispartof 2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.2, p.657-661
issn
language eng
recordid cdi_ieee_primary_4682319
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active contours
biometric identification
Biometrics
Curve fitting
Data mining
Eyelids
Histograms
Image edge detection
Image segmentation
Information technology
Iris recognition
iris segmentation
non linear data fitting
Ransac
title A Novel Compound Approach for Iris Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Compound%20Approach%20for%20Iris%20Segmentation&rft.btitle=2008%20Third%20International%20Conference%20on%20Convergence%20and%20Hybrid%20Information%20Technology&rft.au=Ranjzad,%20H.&rft.date=2008-11&rft.volume=2&rft.spage=657&rft.epage=661&rft.pages=657-661&rft.isbn=0769534074&rft.isbn_list=9780769534077&rft_id=info:doi/10.1109/ICCIT.2008.176&rft_dat=%3Cieee_6IE%3E4682319%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4682319&rfr_iscdi=true