Slant Classification Using FuzzySIS

This paper covers the area of signature recognition and fuzzy logic. It addresses the usage of fuzzy logic to be applied in signature slant recognition. Signature slant is vaguely identifiable and hard to determine for its slant form, in this study, the aim is to distinguish right slant, left slant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shamsuddin, M.R., Ibrahim, Z., Mohamed, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1085
container_issue
container_start_page 1080
container_title
container_volume 1
creator Shamsuddin, M.R.
Ibrahim, Z.
Mohamed, A.
description This paper covers the area of signature recognition and fuzzy logic. It addresses the usage of fuzzy logic to be applied in signature slant recognition. Signature slant is vaguely identifiable and hard to determine for its slant form, in this study, the aim is to distinguish right slant, left slant and vertical slant. As fuzzy can deal with vague and ambiguous terms, it is applied to solve this problem. Based on 66 acquired signatures, the fuzzy range is identified. Then, a fuzzy slant identification system (FuzzySIS) is created. Identifiable slant degrees are extracted using a slant identification algorithm to yield an input for the created fuzzy systems. The result is then tested for its accuracy with an available 100 sample of proofed signatures. The result shows a favorable accuracy of 81% correct slant identification. It is hoped that implementation would be able to give some degree of contribution in the area of signature recognition and fuzzy logic.
doi_str_mv 10.1109/ICCIT.2008.381
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4682177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682177</ieee_id><sourcerecordid>4682177</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a6205892e21c8e0f608452297f0f8e23724767d35fa52c32720606c9e90b690d3</originalsourceid><addsrcrecordid>eNotjT1LA0EUABckoIlpbWwOrO987-3H2y1lMeYgYHFJHdbLrqycp2TPIvn1KloNTDEjxA1CgwjuvvW-3TYEYBtp8ULMgY3TUgGrmZj_ekdWSXcplqW8AQA6w8h4Je66IYxT5YdQSk65D1P-GKtdyeNrtfo6n09d212LWQpDict_LsRu9bj163rz_NT6h02dkfVUB0Ogf0aRsLcRkgGrNJHjBMlGkkyKDR-kTkFTL4kJDJjeRQcvxsFBLsTtXzfHGPefx_wejqe9MpaQWX4D0gw8vg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Slant Classification Using FuzzySIS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shamsuddin, M.R. ; Ibrahim, Z. ; Mohamed, A.</creator><creatorcontrib>Shamsuddin, M.R. ; Ibrahim, Z. ; Mohamed, A.</creatorcontrib><description>This paper covers the area of signature recognition and fuzzy logic. It addresses the usage of fuzzy logic to be applied in signature slant recognition. Signature slant is vaguely identifiable and hard to determine for its slant form, in this study, the aim is to distinguish right slant, left slant and vertical slant. As fuzzy can deal with vague and ambiguous terms, it is applied to solve this problem. Based on 66 acquired signatures, the fuzzy range is identified. Then, a fuzzy slant identification system (FuzzySIS) is created. Identifiable slant degrees are extracted using a slant identification algorithm to yield an input for the created fuzzy systems. The result is then tested for its accuracy with an available 100 sample of proofed signatures. The result shows a favorable accuracy of 81% correct slant identification. It is hoped that implementation would be able to give some degree of contribution in the area of signature recognition and fuzzy logic.</description><identifier>ISBN: 0769534074</identifier><identifier>ISBN: 9780769534077</identifier><identifier>DOI: 10.1109/ICCIT.2008.381</identifier><identifier>LCCN: 2008928439</identifier><language>eng</language><publisher>IEEE</publisher><subject>fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; Humans ; Inference algorithms ; Information technology ; signature feature ; Size measurement ; slant ; slant identification ; Testing ; Writing</subject><ispartof>2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.1, p.1080-1085</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shamsuddin, M.R.</creatorcontrib><creatorcontrib>Ibrahim, Z.</creatorcontrib><creatorcontrib>Mohamed, A.</creatorcontrib><title>Slant Classification Using FuzzySIS</title><title>2008 Third International Conference on Convergence and Hybrid Information Technology</title><addtitle>ICCIT</addtitle><description>This paper covers the area of signature recognition and fuzzy logic. It addresses the usage of fuzzy logic to be applied in signature slant recognition. Signature slant is vaguely identifiable and hard to determine for its slant form, in this study, the aim is to distinguish right slant, left slant and vertical slant. As fuzzy can deal with vague and ambiguous terms, it is applied to solve this problem. Based on 66 acquired signatures, the fuzzy range is identified. Then, a fuzzy slant identification system (FuzzySIS) is created. Identifiable slant degrees are extracted using a slant identification algorithm to yield an input for the created fuzzy systems. The result is then tested for its accuracy with an available 100 sample of proofed signatures. The result shows a favorable accuracy of 81% correct slant identification. It is hoped that implementation would be able to give some degree of contribution in the area of signature recognition and fuzzy logic.</description><subject>fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Humans</subject><subject>Inference algorithms</subject><subject>Information technology</subject><subject>signature feature</subject><subject>Size measurement</subject><subject>slant</subject><subject>slant identification</subject><subject>Testing</subject><subject>Writing</subject><isbn>0769534074</isbn><isbn>9780769534077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjT1LA0EUABckoIlpbWwOrO987-3H2y1lMeYgYHFJHdbLrqycp2TPIvn1KloNTDEjxA1CgwjuvvW-3TYEYBtp8ULMgY3TUgGrmZj_ekdWSXcplqW8AQA6w8h4Je66IYxT5YdQSk65D1P-GKtdyeNrtfo6n09d212LWQpDict_LsRu9bj163rz_NT6h02dkfVUB0Ogf0aRsLcRkgGrNJHjBMlGkkyKDR-kTkFTL4kJDJjeRQcvxsFBLsTtXzfHGPefx_wejqe9MpaQWX4D0gw8vg</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Shamsuddin, M.R.</creator><creator>Ibrahim, Z.</creator><creator>Mohamed, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Slant Classification Using FuzzySIS</title><author>Shamsuddin, M.R. ; Ibrahim, Z. ; Mohamed, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a6205892e21c8e0f608452297f0f8e23724767d35fa52c32720606c9e90b690d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Humans</topic><topic>Inference algorithms</topic><topic>Information technology</topic><topic>signature feature</topic><topic>Size measurement</topic><topic>slant</topic><topic>slant identification</topic><topic>Testing</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Shamsuddin, M.R.</creatorcontrib><creatorcontrib>Ibrahim, Z.</creatorcontrib><creatorcontrib>Mohamed, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shamsuddin, M.R.</au><au>Ibrahim, Z.</au><au>Mohamed, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Slant Classification Using FuzzySIS</atitle><btitle>2008 Third International Conference on Convergence and Hybrid Information Technology</btitle><stitle>ICCIT</stitle><date>2008-11</date><risdate>2008</risdate><volume>1</volume><spage>1080</spage><epage>1085</epage><pages>1080-1085</pages><isbn>0769534074</isbn><isbn>9780769534077</isbn><abstract>This paper covers the area of signature recognition and fuzzy logic. It addresses the usage of fuzzy logic to be applied in signature slant recognition. Signature slant is vaguely identifiable and hard to determine for its slant form, in this study, the aim is to distinguish right slant, left slant and vertical slant. As fuzzy can deal with vague and ambiguous terms, it is applied to solve this problem. Based on 66 acquired signatures, the fuzzy range is identified. Then, a fuzzy slant identification system (FuzzySIS) is created. Identifiable slant degrees are extracted using a slant identification algorithm to yield an input for the created fuzzy systems. The result is then tested for its accuracy with an available 100 sample of proofed signatures. The result shows a favorable accuracy of 81% correct slant identification. It is hoped that implementation would be able to give some degree of contribution in the area of signature recognition and fuzzy logic.</abstract><pub>IEEE</pub><doi>10.1109/ICCIT.2008.381</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769534074
ispartof 2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, Vol.1, p.1080-1085
issn
language eng
recordid cdi_ieee_primary_4682177
source IEEE Electronic Library (IEL) Conference Proceedings
subjects fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Fuzzy systems
Humans
Inference algorithms
Information technology
signature feature
Size measurement
slant
slant identification
Testing
Writing
title Slant Classification Using FuzzySIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Slant%20Classification%20Using%20FuzzySIS&rft.btitle=2008%20Third%20International%20Conference%20on%20Convergence%20and%20Hybrid%20Information%20Technology&rft.au=Shamsuddin,%20M.R.&rft.date=2008-11&rft.volume=1&rft.spage=1080&rft.epage=1085&rft.pages=1080-1085&rft.isbn=0769534074&rft.isbn_list=9780769534077&rft_id=info:doi/10.1109/ICCIT.2008.381&rft_dat=%3Cieee_6IE%3E4682177%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4682177&rfr_iscdi=true