Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield

Variability is an important aspect of SRAM cell design. Failure probabilities of P fail les10 -10 have to be estimated through statistical simulations. Accurate statistical techniques such as Importance Sampling Monte Carlo simulations are essential to accurately and efficiently estimate such low fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Doorn, T.S., ter Maten, E.J.W., Croon, J.A., Di Bucchianico, A., Wittich, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue
container_start_page 230
container_title
container_volume
creator Doorn, T.S.
ter Maten, E.J.W.
Croon, J.A.
Di Bucchianico, A.
Wittich, O.
description Variability is an important aspect of SRAM cell design. Failure probabilities of P fail les10 -10 have to be estimated through statistical simulations. Accurate statistical techniques such as Importance Sampling Monte Carlo simulations are essential to accurately and efficiently estimate such low failure probabilities. This paper shows that a simple form of Importance Sampling is sufficient for simulating P fail les10 -10 for the SRAM parameters Static Noise Margin, Write Margin and Read Current. For the SNM, a new simple technique is proposed that allows extrapolating the SNM distribution based on a limited number of trials. For SRAM total leakage currents, it suffices to take the averages into account for designing SRAM cells and modules. A guideline is proposed to ensure bitline leakage currents do not compromise SRAM functionality.
doi_str_mv 10.1109/ESSCIRC.2008.4681834
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4681834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4681834</ieee_id><sourcerecordid>4681834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-45d3962be2f93062f3bf7caf8fd2342bba8f618fa4651e4054747a96d01155ad3</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1Loir9Alj4B1J8fW8cZ1lFpURqhWhhXTmJjYLykp0u-vdE0A2zmcWRRkfD2BOIJYBIn9eHQ5bvs6UUQi9JadBIV2yRJhpIEklUUlyzmVSEESCkN_8Y4C2bQYoi0hrxni1C-BZTKEYEmLH3vB16P5qutDyYdmjq7ovv-m60PDO-6Xmo21NjxrrvAne956YsT95M2Iaxbn8B7x0_7Fc7fq5tUz2wO2eaYBeXnrPPl_VH9hpt3zZ5ttpGJaIeI4orTJUsrHSTnZIOC5eUxmlXSSRZFEY7BdoZUjFYEjEllJhUVQIgjk2Fc_b4t1tba4-Dn2T8-Xg5CH8AIS1Vlg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Doorn, T.S. ; ter Maten, E.J.W. ; Croon, J.A. ; Di Bucchianico, A. ; Wittich, O.</creator><creatorcontrib>Doorn, T.S. ; ter Maten, E.J.W. ; Croon, J.A. ; Di Bucchianico, A. ; Wittich, O.</creatorcontrib><description>Variability is an important aspect of SRAM cell design. Failure probabilities of P fail les10 -10 have to be estimated through statistical simulations. Accurate statistical techniques such as Importance Sampling Monte Carlo simulations are essential to accurately and efficiently estimate such low failure probabilities. This paper shows that a simple form of Importance Sampling is sufficient for simulating P fail les10 -10 for the SRAM parameters Static Noise Margin, Write Margin and Read Current. For the SNM, a new simple technique is proposed that allows extrapolating the SNM distribution based on a limited number of trials. For SRAM total leakage currents, it suffices to take the averages into account for designing SRAM cells and modules. A guideline is proposed to ensure bitline leakage currents do not compromise SRAM functionality.</description><identifier>ISSN: 1930-8833</identifier><identifier>ISBN: 9781424423613</identifier><identifier>ISBN: 1424423619</identifier><identifier>EISSN: 2643-1319</identifier><identifier>EISBN: 9781424423620</identifier><identifier>EISBN: 1424423627</identifier><identifier>DOI: 10.1109/ESSCIRC.2008.4681834</identifier><language>eng</language><publisher>IEEE</publisher><subject>Extrapolation ; Guidelines ; Leakage current ; Monte Carlo methods ; Probability density function ; Probability distribution ; Random access memory ; Temperature ; Voltage ; Yield estimation</subject><ispartof>ESSCIRC 2008 - 34th European Solid-State Circuits Conference, 2008, p.230-233</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-45d3962be2f93062f3bf7caf8fd2342bba8f618fa4651e4054747a96d01155ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4681834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4681834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doorn, T.S.</creatorcontrib><creatorcontrib>ter Maten, E.J.W.</creatorcontrib><creatorcontrib>Croon, J.A.</creatorcontrib><creatorcontrib>Di Bucchianico, A.</creatorcontrib><creatorcontrib>Wittich, O.</creatorcontrib><title>Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield</title><title>ESSCIRC 2008 - 34th European Solid-State Circuits Conference</title><addtitle>ESSCIRC</addtitle><description>Variability is an important aspect of SRAM cell design. Failure probabilities of P fail les10 -10 have to be estimated through statistical simulations. Accurate statistical techniques such as Importance Sampling Monte Carlo simulations are essential to accurately and efficiently estimate such low failure probabilities. This paper shows that a simple form of Importance Sampling is sufficient for simulating P fail les10 -10 for the SRAM parameters Static Noise Margin, Write Margin and Read Current. For the SNM, a new simple technique is proposed that allows extrapolating the SNM distribution based on a limited number of trials. For SRAM total leakage currents, it suffices to take the averages into account for designing SRAM cells and modules. A guideline is proposed to ensure bitline leakage currents do not compromise SRAM functionality.</description><subject>Extrapolation</subject><subject>Guidelines</subject><subject>Leakage current</subject><subject>Monte Carlo methods</subject><subject>Probability density function</subject><subject>Probability distribution</subject><subject>Random access memory</subject><subject>Temperature</subject><subject>Voltage</subject><subject>Yield estimation</subject><issn>1930-8833</issn><issn>2643-1319</issn><isbn>9781424423613</isbn><isbn>1424423619</isbn><isbn>9781424423620</isbn><isbn>1424423627</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURM1Loir9Alj4B1J8fW8cZ1lFpURqhWhhXTmJjYLykp0u-vdE0A2zmcWRRkfD2BOIJYBIn9eHQ5bvs6UUQi9JadBIV2yRJhpIEklUUlyzmVSEESCkN_8Y4C2bQYoi0hrxni1C-BZTKEYEmLH3vB16P5qutDyYdmjq7ovv-m60PDO-6Xmo21NjxrrvAne956YsT95M2Iaxbn8B7x0_7Fc7fq5tUz2wO2eaYBeXnrPPl_VH9hpt3zZ5ttpGJaIeI4orTJUsrHSTnZIOC5eUxmlXSSRZFEY7BdoZUjFYEjEllJhUVQIgjk2Fc_b4t1tba4-Dn2T8-Xg5CH8AIS1Vlg</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Doorn, T.S.</creator><creator>ter Maten, E.J.W.</creator><creator>Croon, J.A.</creator><creator>Di Bucchianico, A.</creator><creator>Wittich, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield</title><author>Doorn, T.S. ; ter Maten, E.J.W. ; Croon, J.A. ; Di Bucchianico, A. ; Wittich, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-45d3962be2f93062f3bf7caf8fd2342bba8f618fa4651e4054747a96d01155ad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Extrapolation</topic><topic>Guidelines</topic><topic>Leakage current</topic><topic>Monte Carlo methods</topic><topic>Probability density function</topic><topic>Probability distribution</topic><topic>Random access memory</topic><topic>Temperature</topic><topic>Voltage</topic><topic>Yield estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Doorn, T.S.</creatorcontrib><creatorcontrib>ter Maten, E.J.W.</creatorcontrib><creatorcontrib>Croon, J.A.</creatorcontrib><creatorcontrib>Di Bucchianico, A.</creatorcontrib><creatorcontrib>Wittich, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doorn, T.S.</au><au>ter Maten, E.J.W.</au><au>Croon, J.A.</au><au>Di Bucchianico, A.</au><au>Wittich, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield</atitle><btitle>ESSCIRC 2008 - 34th European Solid-State Circuits Conference</btitle><stitle>ESSCIRC</stitle><date>2008-09</date><risdate>2008</risdate><spage>230</spage><epage>233</epage><pages>230-233</pages><issn>1930-8833</issn><eissn>2643-1319</eissn><isbn>9781424423613</isbn><isbn>1424423619</isbn><eisbn>9781424423620</eisbn><eisbn>1424423627</eisbn><abstract>Variability is an important aspect of SRAM cell design. Failure probabilities of P fail les10 -10 have to be estimated through statistical simulations. Accurate statistical techniques such as Importance Sampling Monte Carlo simulations are essential to accurately and efficiently estimate such low failure probabilities. This paper shows that a simple form of Importance Sampling is sufficient for simulating P fail les10 -10 for the SRAM parameters Static Noise Margin, Write Margin and Read Current. For the SNM, a new simple technique is proposed that allows extrapolating the SNM distribution based on a limited number of trials. For SRAM total leakage currents, it suffices to take the averages into account for designing SRAM cells and modules. A guideline is proposed to ensure bitline leakage currents do not compromise SRAM functionality.</abstract><pub>IEEE</pub><doi>10.1109/ESSCIRC.2008.4681834</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1930-8833
ispartof ESSCIRC 2008 - 34th European Solid-State Circuits Conference, 2008, p.230-233
issn 1930-8833
2643-1319
language eng
recordid cdi_ieee_primary_4681834
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Extrapolation
Guidelines
Leakage current
Monte Carlo methods
Probability density function
Probability distribution
Random access memory
Temperature
Voltage
Yield estimation
title Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Importance%20sampling%20Monte%20Carlo%20simulations%20for%20accurate%20estimation%20of%20SRAM%20yield&rft.btitle=ESSCIRC%202008%20-%2034th%20European%20Solid-State%20Circuits%20Conference&rft.au=Doorn,%20T.S.&rft.date=2008-09&rft.spage=230&rft.epage=233&rft.pages=230-233&rft.issn=1930-8833&rft.eissn=2643-1319&rft.isbn=9781424423613&rft.isbn_list=1424423619&rft_id=info:doi/10.1109/ESSCIRC.2008.4681834&rft_dat=%3Cieee_6IE%3E4681834%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423620&rft.eisbn_list=1424423627&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4681834&rfr_iscdi=true