Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm
This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Hippolyte, J.L. Espanet, C. Chamagne, D. Bloch, C. Chatonnay, P. |
description | This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view. |
doi_str_mv | 10.1109/VPPC.2008.4677611 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4677611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4677611</ieee_id><sourcerecordid>4677611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5f85ef1e59bf34d7bef491bb182efd3dca41b0664833f5256c375ecc4e706c603</originalsourceid><addsrcrecordid>eNo1kFtLw0AQhVe0YFv7A8SX_QOpe788SvEGBfNQfC2bdLZuSXZLsinorzfSCgcOZ_hmGA5C95QsKSX28bMsV0tGiFkKpbWi9AotrDZUMCGoEVZfo9l_MOYGTanlpjBaqgmajXvajmLyFi36_kAIocowZtQU1SV0rYsQM27dPsJoKacOt0OTQ6oOUOdwApyOObThx42ziIc-xP2ZODaAuyH2OHnsIoZTaoY_xnXf2DX71IX81d6hiXdND4uLz9Hm5XmzeivWH6_vq6d1ESzJhfRGgqcgbeW52OkKvLC0qqhh4Hd8VztBK6KUMJx7yaSquZZQ1wI0UbUifI4ezmcDAGyPXWjHL7aXvvgvESVdfw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hippolyte, J.L. ; Espanet, C. ; Chamagne, D. ; Bloch, C. ; Chatonnay, P.</creator><creatorcontrib>Hippolyte, J.L. ; Espanet, C. ; Chamagne, D. ; Bloch, C. ; Chatonnay, P.</creatorcontrib><description>This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view.</description><identifier>ISSN: 1938-8756</identifier><identifier>ISBN: 1424418488</identifier><identifier>ISBN: 9781424418480</identifier><identifier>EISBN: 9781424418497</identifier><identifier>EISBN: 1424418496</identifier><identifier>DOI: 10.1109/VPPC.2008.4677611</identifier><identifier>LCCN: 2007907925</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automotive Applications ; Combustion ; Constraint optimization ; Energy consumption ; Engines ; Evolutionary computation ; Fans ; Genetic Algorithm ; Genetic algorithms ; In-wheel Motor ; Optimal Design ; Optimization Methods ; Permanent magnet machines ; Permanent magnet motors ; Propulsion</subject><ispartof>2008 IEEE Vehicle Power and Propulsion Conference, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4677611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4677611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hippolyte, J.L.</creatorcontrib><creatorcontrib>Espanet, C.</creatorcontrib><creatorcontrib>Chamagne, D.</creatorcontrib><creatorcontrib>Bloch, C.</creatorcontrib><creatorcontrib>Chatonnay, P.</creatorcontrib><title>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</title><title>2008 IEEE Vehicle Power and Propulsion Conference</title><addtitle>VPPC</addtitle><description>This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view.</description><subject>Automotive Applications</subject><subject>Combustion</subject><subject>Constraint optimization</subject><subject>Energy consumption</subject><subject>Engines</subject><subject>Evolutionary computation</subject><subject>Fans</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>In-wheel Motor</subject><subject>Optimal Design</subject><subject>Optimization Methods</subject><subject>Permanent magnet machines</subject><subject>Permanent magnet motors</subject><subject>Propulsion</subject><issn>1938-8756</issn><isbn>1424418488</isbn><isbn>9781424418480</isbn><isbn>9781424418497</isbn><isbn>1424418496</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kFtLw0AQhVe0YFv7A8SX_QOpe788SvEGBfNQfC2bdLZuSXZLsinorzfSCgcOZ_hmGA5C95QsKSX28bMsV0tGiFkKpbWi9AotrDZUMCGoEVZfo9l_MOYGTanlpjBaqgmajXvajmLyFi36_kAIocowZtQU1SV0rYsQM27dPsJoKacOt0OTQ6oOUOdwApyOObThx42ziIc-xP2ZODaAuyH2OHnsIoZTaoY_xnXf2DX71IX81d6hiXdND4uLz9Hm5XmzeivWH6_vq6d1ESzJhfRGgqcgbeW52OkKvLC0qqhh4Hd8VztBK6KUMJx7yaSquZZQ1wI0UbUifI4ezmcDAGyPXWjHL7aXvvgvESVdfw</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Hippolyte, J.L.</creator><creator>Espanet, C.</creator><creator>Chamagne, D.</creator><creator>Bloch, C.</creator><creator>Chatonnay, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</title><author>Hippolyte, J.L. ; Espanet, C. ; Chamagne, D. ; Bloch, C. ; Chatonnay, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5f85ef1e59bf34d7bef491bb182efd3dca41b0664833f5256c375ecc4e706c603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automotive Applications</topic><topic>Combustion</topic><topic>Constraint optimization</topic><topic>Energy consumption</topic><topic>Engines</topic><topic>Evolutionary computation</topic><topic>Fans</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>In-wheel Motor</topic><topic>Optimal Design</topic><topic>Optimization Methods</topic><topic>Permanent magnet machines</topic><topic>Permanent magnet motors</topic><topic>Propulsion</topic><toplevel>online_resources</toplevel><creatorcontrib>Hippolyte, J.L.</creatorcontrib><creatorcontrib>Espanet, C.</creatorcontrib><creatorcontrib>Chamagne, D.</creatorcontrib><creatorcontrib>Bloch, C.</creatorcontrib><creatorcontrib>Chatonnay, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hippolyte, J.L.</au><au>Espanet, C.</au><au>Chamagne, D.</au><au>Bloch, C.</au><au>Chatonnay, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</atitle><btitle>2008 IEEE Vehicle Power and Propulsion Conference</btitle><stitle>VPPC</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1938-8756</issn><isbn>1424418488</isbn><isbn>9781424418480</isbn><eisbn>9781424418497</eisbn><eisbn>1424418496</eisbn><abstract>This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view.</abstract><pub>IEEE</pub><doi>10.1109/VPPC.2008.4677611</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1938-8756 |
ispartof | 2008 IEEE Vehicle Power and Propulsion Conference, 2008, p.1-5 |
issn | 1938-8756 |
language | eng |
recordid | cdi_ieee_primary_4677611 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automotive Applications Combustion Constraint optimization Energy consumption Engines Evolutionary computation Fans Genetic Algorithm Genetic algorithms In-wheel Motor Optimal Design Optimization Methods Permanent magnet machines Permanent magnet motors Propulsion |
title | Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Permanent%20magnet%20motor%20multiobjective%20optimization%20using%20multiple%20runs%20of%20an%20evolutionary%20algorithm&rft.btitle=2008%20IEEE%20Vehicle%20Power%20and%20Propulsion%20Conference&rft.au=Hippolyte,%20J.L.&rft.date=2008-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1938-8756&rft.isbn=1424418488&rft.isbn_list=9781424418480&rft_id=info:doi/10.1109/VPPC.2008.4677611&rft_dat=%3Cieee_6IE%3E4677611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418497&rft.eisbn_list=1424418496&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4677611&rfr_iscdi=true |