Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm

This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hippolyte, J.L., Espanet, C., Chamagne, D., Bloch, C., Chatonnay, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Hippolyte, J.L.
Espanet, C.
Chamagne, D.
Bloch, C.
Chatonnay, P.
description This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view.
doi_str_mv 10.1109/VPPC.2008.4677611
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4677611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4677611</ieee_id><sourcerecordid>4677611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5f85ef1e59bf34d7bef491bb182efd3dca41b0664833f5256c375ecc4e706c603</originalsourceid><addsrcrecordid>eNo1kFtLw0AQhVe0YFv7A8SX_QOpe788SvEGBfNQfC2bdLZuSXZLsinorzfSCgcOZ_hmGA5C95QsKSX28bMsV0tGiFkKpbWi9AotrDZUMCGoEVZfo9l_MOYGTanlpjBaqgmajXvajmLyFi36_kAIocowZtQU1SV0rYsQM27dPsJoKacOt0OTQ6oOUOdwApyOObThx42ziIc-xP2ZODaAuyH2OHnsIoZTaoY_xnXf2DX71IX81d6hiXdND4uLz9Hm5XmzeivWH6_vq6d1ESzJhfRGgqcgbeW52OkKvLC0qqhh4Hd8VztBK6KUMJx7yaSquZZQ1wI0UbUifI4ezmcDAGyPXWjHL7aXvvgvESVdfw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hippolyte, J.L. ; Espanet, C. ; Chamagne, D. ; Bloch, C. ; Chatonnay, P.</creator><creatorcontrib>Hippolyte, J.L. ; Espanet, C. ; Chamagne, D. ; Bloch, C. ; Chatonnay, P.</creatorcontrib><description>This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view.</description><identifier>ISSN: 1938-8756</identifier><identifier>ISBN: 1424418488</identifier><identifier>ISBN: 9781424418480</identifier><identifier>EISBN: 9781424418497</identifier><identifier>EISBN: 1424418496</identifier><identifier>DOI: 10.1109/VPPC.2008.4677611</identifier><identifier>LCCN: 2007907925</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automotive Applications ; Combustion ; Constraint optimization ; Energy consumption ; Engines ; Evolutionary computation ; Fans ; Genetic Algorithm ; Genetic algorithms ; In-wheel Motor ; Optimal Design ; Optimization Methods ; Permanent magnet machines ; Permanent magnet motors ; Propulsion</subject><ispartof>2008 IEEE Vehicle Power and Propulsion Conference, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4677611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4677611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hippolyte, J.L.</creatorcontrib><creatorcontrib>Espanet, C.</creatorcontrib><creatorcontrib>Chamagne, D.</creatorcontrib><creatorcontrib>Bloch, C.</creatorcontrib><creatorcontrib>Chatonnay, P.</creatorcontrib><title>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</title><title>2008 IEEE Vehicle Power and Propulsion Conference</title><addtitle>VPPC</addtitle><description>This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view.</description><subject>Automotive Applications</subject><subject>Combustion</subject><subject>Constraint optimization</subject><subject>Energy consumption</subject><subject>Engines</subject><subject>Evolutionary computation</subject><subject>Fans</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>In-wheel Motor</subject><subject>Optimal Design</subject><subject>Optimization Methods</subject><subject>Permanent magnet machines</subject><subject>Permanent magnet motors</subject><subject>Propulsion</subject><issn>1938-8756</issn><isbn>1424418488</isbn><isbn>9781424418480</isbn><isbn>9781424418497</isbn><isbn>1424418496</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kFtLw0AQhVe0YFv7A8SX_QOpe788SvEGBfNQfC2bdLZuSXZLsinorzfSCgcOZ_hmGA5C95QsKSX28bMsV0tGiFkKpbWi9AotrDZUMCGoEVZfo9l_MOYGTanlpjBaqgmajXvajmLyFi36_kAIocowZtQU1SV0rYsQM27dPsJoKacOt0OTQ6oOUOdwApyOObThx42ziIc-xP2ZODaAuyH2OHnsIoZTaoY_xnXf2DX71IX81d6hiXdND4uLz9Hm5XmzeivWH6_vq6d1ESzJhfRGgqcgbeW52OkKvLC0qqhh4Hd8VztBK6KUMJx7yaSquZZQ1wI0UbUifI4ezmcDAGyPXWjHL7aXvvgvESVdfw</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Hippolyte, J.L.</creator><creator>Espanet, C.</creator><creator>Chamagne, D.</creator><creator>Bloch, C.</creator><creator>Chatonnay, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</title><author>Hippolyte, J.L. ; Espanet, C. ; Chamagne, D. ; Bloch, C. ; Chatonnay, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5f85ef1e59bf34d7bef491bb182efd3dca41b0664833f5256c375ecc4e706c603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automotive Applications</topic><topic>Combustion</topic><topic>Constraint optimization</topic><topic>Energy consumption</topic><topic>Engines</topic><topic>Evolutionary computation</topic><topic>Fans</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>In-wheel Motor</topic><topic>Optimal Design</topic><topic>Optimization Methods</topic><topic>Permanent magnet machines</topic><topic>Permanent magnet motors</topic><topic>Propulsion</topic><toplevel>online_resources</toplevel><creatorcontrib>Hippolyte, J.L.</creatorcontrib><creatorcontrib>Espanet, C.</creatorcontrib><creatorcontrib>Chamagne, D.</creatorcontrib><creatorcontrib>Bloch, C.</creatorcontrib><creatorcontrib>Chatonnay, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hippolyte, J.L.</au><au>Espanet, C.</au><au>Chamagne, D.</au><au>Bloch, C.</au><au>Chatonnay, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm</atitle><btitle>2008 IEEE Vehicle Power and Propulsion Conference</btitle><stitle>VPPC</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1938-8756</issn><isbn>1424418488</isbn><isbn>9781424418480</isbn><eisbn>9781424418497</eisbn><eisbn>1424418496</eisbn><abstract>This paper presents an original method of permanent magnet motor optimal design. The permanent magnet machines optimization must respect multiple constraints. Efficiency and weight have a large influence on the design. These two constraints can be found in several vehicular applications: propulsion motors, electrical fans for combustion engine, driving motors for ancillaries, driving motors for air-circuit fuel-cell compressor...Indeed, in all those embedded applications, the efficiency must be maximal to limit the energy consumption and the mass or the volume must be as low as possible. In this paper, the authors focus on an original multi-objective optimization algorithm well adapted to the previous problem. The method is based on multiplying runs of a new genetic algorithm specialized in broadly covering the solution space around target objectives. This algorithm is an improved variant of previously developed algorithms. The efficiency of these algorithms was proven by comparing with a deterministic algorithm (SQP) and a reference multi-objective genetic algorithm (NSGA-II). The presented algorithm is first validated on a study case from the literature: the dimensioning of a slotless permanent magnet machine. Then experimental results of the complete method applied on a permanent magnet motor are highlighted in a multi-objective point of view.</abstract><pub>IEEE</pub><doi>10.1109/VPPC.2008.4677611</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1938-8756
ispartof 2008 IEEE Vehicle Power and Propulsion Conference, 2008, p.1-5
issn 1938-8756
language eng
recordid cdi_ieee_primary_4677611
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automotive Applications
Combustion
Constraint optimization
Energy consumption
Engines
Evolutionary computation
Fans
Genetic Algorithm
Genetic algorithms
In-wheel Motor
Optimal Design
Optimization Methods
Permanent magnet machines
Permanent magnet motors
Propulsion
title Permanent magnet motor multiobjective optimization using multiple runs of an evolutionary algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Permanent%20magnet%20motor%20multiobjective%20optimization%20using%20multiple%20runs%20of%20an%20evolutionary%20algorithm&rft.btitle=2008%20IEEE%20Vehicle%20Power%20and%20Propulsion%20Conference&rft.au=Hippolyte,%20J.L.&rft.date=2008-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1938-8756&rft.isbn=1424418488&rft.isbn_list=9781424418480&rft_id=info:doi/10.1109/VPPC.2008.4677611&rft_dat=%3Cieee_6IE%3E4677611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418497&rft.eisbn_list=1424418496&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4677611&rfr_iscdi=true