Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier

To diagnose the structural disorders of brain, electroencephalography (EEG) is routinely used for observing the epileptic seizures in neurology clinics, which is one of the major brain disorders till today. In this work, we present a new, EEG-based, brain-state identification method which could form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yaozhang Pan, Shuzhi Sam Ge, Al Mamun, A., Feng Ru Tang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue
container_start_page 358
container_title
container_volume
creator Yaozhang Pan
Shuzhi Sam Ge
Al Mamun, A.
Feng Ru Tang
description To diagnose the structural disorders of brain, electroencephalography (EEG) is routinely used for observing the epileptic seizures in neurology clinics, which is one of the major brain disorders till today. In this work, we present a new, EEG-based, brain-state identification method which could form the basis for detecting epileptic seizure. We aim to classify the EEG signals and diagnose the epileptic seizures directly by using weighted locally linear embedding (WLLE) and support vector machine (SVM). Firstly, we use WLLE to do feature extraction of the EEG signal to obtain more compact representations of the internal characteristic and structure in the original data, which captures the information necessary for further manipulations. Then, SVM classifier is used to identify the seizures onset state from normal state of the patients.
doi_str_mv 10.1109/ICCIS.2008.4670889
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4670889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4670889</ieee_id><sourcerecordid>4670889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c139t-2433a41973b3a79a2586585d550b49f32bedbfa1eea1b685461a30de0b3fe5f13</originalsourceid><addsrcrecordid>eNpFUE1PAjEQrVESAfkDeukfWGw7bbc9mhWQBOMB9Sjp7k6xpixmu8Tgr3eNJM7l5U3mfWQIueZsyjmzt8uiWK6ngjEzlTpnxtgzMuJSSMl1LuX5PwF9QYYChM4MFzAgo16UW1DG8EsySemD9SNVv1BD8naPHVZd2Dd072nC8H1oMdHQ0NlsQVPYNi7SQwrNln5h2L53WNO4r1yMRxpDg66luCuxrn8vXFPT9esjraJLKfiA7RUZeBcTTk44Ji_z2XPxkK2eFsvibpVVHGyXCQngJLc5lOBy64Qyuq9XK8VKaT2IPqH0jiM6XmqjpOYOWI2sBI_KcxiTmz_fgIibzzbsXHvcnB4FP7HFWHM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yaozhang Pan ; Shuzhi Sam Ge ; Al Mamun, A. ; Feng Ru Tang</creator><creatorcontrib>Yaozhang Pan ; Shuzhi Sam Ge ; Al Mamun, A. ; Feng Ru Tang</creatorcontrib><description>To diagnose the structural disorders of brain, electroencephalography (EEG) is routinely used for observing the epileptic seizures in neurology clinics, which is one of the major brain disorders till today. In this work, we present a new, EEG-based, brain-state identification method which could form the basis for detecting epileptic seizure. We aim to classify the EEG signals and diagnose the epileptic seizures directly by using weighted locally linear embedding (WLLE) and support vector machine (SVM). Firstly, we use WLLE to do feature extraction of the EEG signal to obtain more compact representations of the internal characteristic and structure in the original data, which captures the information necessary for further manipulations. Then, SVM classifier is used to identify the seizures onset state from normal state of the patients.</description><identifier>ISSN: 2326-8123</identifier><identifier>ISBN: 1424416736</identifier><identifier>ISBN: 9781424416738</identifier><identifier>EISBN: 1424416744</identifier><identifier>EISBN: 9781424416745</identifier><identifier>DOI: 10.1109/ICCIS.2008.4670889</identifier><identifier>LCCN: 2007935881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Clustering algorithms ; Electroencephalography ; Epilepsy ; Feature extraction ; Frequency synchronization ; locally linear embedding ; Mice ; seizures detection ; Support vector machine classification ; Support vector machines ; Transmitters ; weighted distance measurement ; weighted locally linear embedding</subject><ispartof>2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, p.358-363</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c139t-2433a41973b3a79a2586585d550b49f32bedbfa1eea1b685461a30de0b3fe5f13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4670889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4670889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaozhang Pan</creatorcontrib><creatorcontrib>Shuzhi Sam Ge</creatorcontrib><creatorcontrib>Al Mamun, A.</creatorcontrib><creatorcontrib>Feng Ru Tang</creatorcontrib><title>Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier</title><title>2008 IEEE Conference on Cybernetics and Intelligent Systems</title><addtitle>ICCIS</addtitle><description>To diagnose the structural disorders of brain, electroencephalography (EEG) is routinely used for observing the epileptic seizures in neurology clinics, which is one of the major brain disorders till today. In this work, we present a new, EEG-based, brain-state identification method which could form the basis for detecting epileptic seizure. We aim to classify the EEG signals and diagnose the epileptic seizures directly by using weighted locally linear embedding (WLLE) and support vector machine (SVM). Firstly, we use WLLE to do feature extraction of the EEG signal to obtain more compact representations of the internal characteristic and structure in the original data, which captures the information necessary for further manipulations. Then, SVM classifier is used to identify the seizures onset state from normal state of the patients.</description><subject>Animals</subject><subject>Clustering algorithms</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Frequency synchronization</subject><subject>locally linear embedding</subject><subject>Mice</subject><subject>seizures detection</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Transmitters</subject><subject>weighted distance measurement</subject><subject>weighted locally linear embedding</subject><issn>2326-8123</issn><isbn>1424416736</isbn><isbn>9781424416738</isbn><isbn>1424416744</isbn><isbn>9781424416745</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1PAjEQrVESAfkDeukfWGw7bbc9mhWQBOMB9Sjp7k6xpixmu8Tgr3eNJM7l5U3mfWQIueZsyjmzt8uiWK6ngjEzlTpnxtgzMuJSSMl1LuX5PwF9QYYChM4MFzAgo16UW1DG8EsySemD9SNVv1BD8naPHVZd2Dd072nC8H1oMdHQ0NlsQVPYNi7SQwrNln5h2L53WNO4r1yMRxpDg66luCuxrn8vXFPT9esjraJLKfiA7RUZeBcTTk44Ji_z2XPxkK2eFsvibpVVHGyXCQngJLc5lOBy64Qyuq9XK8VKaT2IPqH0jiM6XmqjpOYOWI2sBI_KcxiTmz_fgIibzzbsXHvcnB4FP7HFWHM</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Yaozhang Pan</creator><creator>Shuzhi Sam Ge</creator><creator>Al Mamun, A.</creator><creator>Feng Ru Tang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier</title><author>Yaozhang Pan ; Shuzhi Sam Ge ; Al Mamun, A. ; Feng Ru Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c139t-2433a41973b3a79a2586585d550b49f32bedbfa1eea1b685461a30de0b3fe5f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Clustering algorithms</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Frequency synchronization</topic><topic>locally linear embedding</topic><topic>Mice</topic><topic>seizures detection</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Transmitters</topic><topic>weighted distance measurement</topic><topic>weighted locally linear embedding</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaozhang Pan</creatorcontrib><creatorcontrib>Shuzhi Sam Ge</creatorcontrib><creatorcontrib>Al Mamun, A.</creatorcontrib><creatorcontrib>Feng Ru Tang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaozhang Pan</au><au>Shuzhi Sam Ge</au><au>Al Mamun, A.</au><au>Feng Ru Tang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier</atitle><btitle>2008 IEEE Conference on Cybernetics and Intelligent Systems</btitle><stitle>ICCIS</stitle><date>2008-09</date><risdate>2008</risdate><spage>358</spage><epage>363</epage><pages>358-363</pages><issn>2326-8123</issn><isbn>1424416736</isbn><isbn>9781424416738</isbn><eisbn>1424416744</eisbn><eisbn>9781424416745</eisbn><abstract>To diagnose the structural disorders of brain, electroencephalography (EEG) is routinely used for observing the epileptic seizures in neurology clinics, which is one of the major brain disorders till today. In this work, we present a new, EEG-based, brain-state identification method which could form the basis for detecting epileptic seizure. We aim to classify the EEG signals and diagnose the epileptic seizures directly by using weighted locally linear embedding (WLLE) and support vector machine (SVM). Firstly, we use WLLE to do feature extraction of the EEG signal to obtain more compact representations of the internal characteristic and structure in the original data, which captures the information necessary for further manipulations. Then, SVM classifier is used to identify the seizures onset state from normal state of the patients.</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2008.4670889</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2326-8123
ispartof 2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, p.358-363
issn 2326-8123
language eng
recordid cdi_ieee_primary_4670889
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Animals
Clustering algorithms
Electroencephalography
Epilepsy
Feature extraction
Frequency synchronization
locally linear embedding
Mice
seizures detection
Support vector machine classification
Support vector machines
Transmitters
weighted distance measurement
weighted locally linear embedding
title Detection of seizures in EEG signal using weighted locally linear embedding and SVM classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20seizures%20in%20EEG%20signal%20using%20weighted%20locally%20linear%20embedding%20and%20SVM%20classifier&rft.btitle=2008%20IEEE%20Conference%20on%20Cybernetics%20and%20Intelligent%20Systems&rft.au=Yaozhang%20Pan&rft.date=2008-09&rft.spage=358&rft.epage=363&rft.pages=358-363&rft.issn=2326-8123&rft.isbn=1424416736&rft.isbn_list=9781424416738&rft_id=info:doi/10.1109/ICCIS.2008.4670889&rft_dat=%3Cieee_6IE%3E4670889%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424416744&rft.eisbn_list=9781424416745&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4670889&rfr_iscdi=true