The Convergence of Iterated Classification
We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommod...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | |
container_start_page | 663 |
container_title | |
container_volume | |
creator | Chang An Baird, H.S. |
description | We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth. |
doi_str_mv | 10.1109/DAS.2008.52 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4670019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4670019</ieee_id><sourcerecordid>4670019</sourcerecordid><originalsourceid>FETCH-LOGICAL-i212t-c24d51967d8aaa1445c24b0f83d69bc4fbe24e58b3f9bcd0dd8a2b37e9e958743</originalsourceid><addsrcrecordid>eNotjEtLxDAUhQMyoDPOyqWbroXW5OZ5l0N9DQy4cAR3Q9LcaGRspSmC_96Kns3H-Tgcxi4Eb4TgeH2zeWqAc9doOGFLbg1qKaV9WbDlr0ZAZeQpW5fyzudosCDwjF3t36hqh_6LxlfqO6qGVG0nGv1EsWqPvpSccuenPPTnbJH8sdD6nyv2fHe7bx_q3eP9tt3s6gwCproDFbVAY6Pz3gul9GwCT05Gg6FTKRAo0i7INNfI47yDIC0hoXZWyRW7_PvNRHT4HPOHH78PyljOBcofwMNAsw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Convergence of Iterated Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chang An ; Baird, H.S.</creator><creatorcontrib>Chang An ; Baird, H.S.</creatorcontrib><description>We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.</description><identifier>ISBN: 076953337X</identifier><identifier>ISBN: 9780769533377</identifier><identifier>DOI: 10.1109/DAS.2008.52</identifier><identifier>LCCN: 2008929463</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; content inventory ; Convergence ; document content extraction ; Drives ; Error analysis ; Feature extraction ; Image analysis ; Image converters ; Image segmentation ; iterated classification ; layout analysis ; Shape ; shape-oblivious segmentation ; Text analysis ; uniform content classification</subject><ispartof>2008 The Eighth IAPR International Workshop on Document Analysis Systems, 2008, p.663-670</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4670019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4670019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang An</creatorcontrib><creatorcontrib>Baird, H.S.</creatorcontrib><title>The Convergence of Iterated Classification</title><title>2008 The Eighth IAPR International Workshop on Document Analysis Systems</title><addtitle>DAS</addtitle><description>We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.</description><subject>Computer science</subject><subject>content inventory</subject><subject>Convergence</subject><subject>document content extraction</subject><subject>Drives</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>Image converters</subject><subject>Image segmentation</subject><subject>iterated classification</subject><subject>layout analysis</subject><subject>Shape</subject><subject>shape-oblivious segmentation</subject><subject>Text analysis</subject><subject>uniform content classification</subject><isbn>076953337X</isbn><isbn>9780769533377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLxDAUhQMyoDPOyqWbroXW5OZ5l0N9DQy4cAR3Q9LcaGRspSmC_96Kns3H-Tgcxi4Eb4TgeH2zeWqAc9doOGFLbg1qKaV9WbDlr0ZAZeQpW5fyzudosCDwjF3t36hqh_6LxlfqO6qGVG0nGv1EsWqPvpSccuenPPTnbJH8sdD6nyv2fHe7bx_q3eP9tt3s6gwCproDFbVAY6Pz3gul9GwCT05Gg6FTKRAo0i7INNfI47yDIC0hoXZWyRW7_PvNRHT4HPOHH78PyljOBcofwMNAsw</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Chang An</creator><creator>Baird, H.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>The Convergence of Iterated Classification</title><author>Chang An ; Baird, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i212t-c24d51967d8aaa1445c24b0f83d69bc4fbe24e58b3f9bcd0dd8a2b37e9e958743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer science</topic><topic>content inventory</topic><topic>Convergence</topic><topic>document content extraction</topic><topic>Drives</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>Image converters</topic><topic>Image segmentation</topic><topic>iterated classification</topic><topic>layout analysis</topic><topic>Shape</topic><topic>shape-oblivious segmentation</topic><topic>Text analysis</topic><topic>uniform content classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang An</creatorcontrib><creatorcontrib>Baird, H.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang An</au><au>Baird, H.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Convergence of Iterated Classification</atitle><btitle>2008 The Eighth IAPR International Workshop on Document Analysis Systems</btitle><stitle>DAS</stitle><date>2008-09</date><risdate>2008</risdate><spage>663</spage><epage>670</epage><pages>663-670</pages><isbn>076953337X</isbn><isbn>9780769533377</isbn><abstract>We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.</abstract><pub>IEEE</pub><doi>10.1109/DAS.2008.52</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 076953337X |
ispartof | 2008 The Eighth IAPR International Workshop on Document Analysis Systems, 2008, p.663-670 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4670019 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science content inventory Convergence document content extraction Drives Error analysis Feature extraction Image analysis Image converters Image segmentation iterated classification layout analysis Shape shape-oblivious segmentation Text analysis uniform content classification |
title | The Convergence of Iterated Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Convergence%20of%20Iterated%20Classification&rft.btitle=2008%20The%20Eighth%20IAPR%20International%20Workshop%20on%20Document%20Analysis%20Systems&rft.au=Chang%20An&rft.date=2008-09&rft.spage=663&rft.epage=670&rft.pages=663-670&rft.isbn=076953337X&rft.isbn_list=9780769533377&rft_id=info:doi/10.1109/DAS.2008.52&rft_dat=%3Cieee_6IE%3E4670019%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4670019&rfr_iscdi=true |