The Convergence of Iterated Classification

We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chang An, Baird, H.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue
container_start_page 663
container_title
container_volume
creator Chang An
Baird, H.S.
description We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.
doi_str_mv 10.1109/DAS.2008.52
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4670019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4670019</ieee_id><sourcerecordid>4670019</sourcerecordid><originalsourceid>FETCH-LOGICAL-i212t-c24d51967d8aaa1445c24b0f83d69bc4fbe24e58b3f9bcd0dd8a2b37e9e958743</originalsourceid><addsrcrecordid>eNotjEtLxDAUhQMyoDPOyqWbroXW5OZ5l0N9DQy4cAR3Q9LcaGRspSmC_96Kns3H-Tgcxi4Eb4TgeH2zeWqAc9doOGFLbg1qKaV9WbDlr0ZAZeQpW5fyzudosCDwjF3t36hqh_6LxlfqO6qGVG0nGv1EsWqPvpSccuenPPTnbJH8sdD6nyv2fHe7bx_q3eP9tt3s6gwCproDFbVAY6Pz3gul9GwCT05Gg6FTKRAo0i7INNfI47yDIC0hoXZWyRW7_PvNRHT4HPOHH78PyljOBcofwMNAsw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Convergence of Iterated Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chang An ; Baird, H.S.</creator><creatorcontrib>Chang An ; Baird, H.S.</creatorcontrib><description>We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.</description><identifier>ISBN: 076953337X</identifier><identifier>ISBN: 9780769533377</identifier><identifier>DOI: 10.1109/DAS.2008.52</identifier><identifier>LCCN: 2008929463</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; content inventory ; Convergence ; document content extraction ; Drives ; Error analysis ; Feature extraction ; Image analysis ; Image converters ; Image segmentation ; iterated classification ; layout analysis ; Shape ; shape-oblivious segmentation ; Text analysis ; uniform content classification</subject><ispartof>2008 The Eighth IAPR International Workshop on Document Analysis Systems, 2008, p.663-670</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4670019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4670019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang An</creatorcontrib><creatorcontrib>Baird, H.S.</creatorcontrib><title>The Convergence of Iterated Classification</title><title>2008 The Eighth IAPR International Workshop on Document Analysis Systems</title><addtitle>DAS</addtitle><description>We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.</description><subject>Computer science</subject><subject>content inventory</subject><subject>Convergence</subject><subject>document content extraction</subject><subject>Drives</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>Image converters</subject><subject>Image segmentation</subject><subject>iterated classification</subject><subject>layout analysis</subject><subject>Shape</subject><subject>shape-oblivious segmentation</subject><subject>Text analysis</subject><subject>uniform content classification</subject><isbn>076953337X</isbn><isbn>9780769533377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLxDAUhQMyoDPOyqWbroXW5OZ5l0N9DQy4cAR3Q9LcaGRspSmC_96Kns3H-Tgcxi4Eb4TgeH2zeWqAc9doOGFLbg1qKaV9WbDlr0ZAZeQpW5fyzudosCDwjF3t36hqh_6LxlfqO6qGVG0nGv1EsWqPvpSccuenPPTnbJH8sdD6nyv2fHe7bx_q3eP9tt3s6gwCproDFbVAY6Pz3gul9GwCT05Gg6FTKRAo0i7INNfI47yDIC0hoXZWyRW7_PvNRHT4HPOHH78PyljOBcofwMNAsw</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Chang An</creator><creator>Baird, H.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>The Convergence of Iterated Classification</title><author>Chang An ; Baird, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i212t-c24d51967d8aaa1445c24b0f83d69bc4fbe24e58b3f9bcd0dd8a2b37e9e958743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer science</topic><topic>content inventory</topic><topic>Convergence</topic><topic>document content extraction</topic><topic>Drives</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>Image converters</topic><topic>Image segmentation</topic><topic>iterated classification</topic><topic>layout analysis</topic><topic>Shape</topic><topic>shape-oblivious segmentation</topic><topic>Text analysis</topic><topic>uniform content classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang An</creatorcontrib><creatorcontrib>Baird, H.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang An</au><au>Baird, H.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Convergence of Iterated Classification</atitle><btitle>2008 The Eighth IAPR International Workshop on Document Analysis Systems</btitle><stitle>DAS</stitle><date>2008-09</date><risdate>2008</risdate><spage>663</spage><epage>670</epage><pages>663-670</pages><isbn>076953337X</isbn><isbn>9780769533377</isbn><abstract>We report an improved methodology for training a sequence of classifiers for document image content extraction, that is, the location and segmentation of regions containing handwriting, machine-printed text, photographs, blank space, etc. The resulting segmentation is pixel-accurate, and so accommodates a wide range of zone shapes (not merely rectangles). We have systematically explored the best scale (spatial extent) of features. We have found that the methodology is sensitive to ground-truthing policy, and especially to precision of ground-truth boundaries. Experiments on a diverse test set of 83 document images show that tighter ground-truth reduces per-pixel classification errors by 45% (from 38.9% to 21.4%). Strong evidence, from both experiments and simulation, suggests that iterated classification converges region boundaries to the ground-truth (i.e. they don't drift). Experiments show that four-stage iterated classifiers reduce the error rates by 24%. We also present an analysis of special cases suggesting reasons why boundaries converge to the ground-truth.</abstract><pub>IEEE</pub><doi>10.1109/DAS.2008.52</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 076953337X
ispartof 2008 The Eighth IAPR International Workshop on Document Analysis Systems, 2008, p.663-670
issn
language eng
recordid cdi_ieee_primary_4670019
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
content inventory
Convergence
document content extraction
Drives
Error analysis
Feature extraction
Image analysis
Image converters
Image segmentation
iterated classification
layout analysis
Shape
shape-oblivious segmentation
Text analysis
uniform content classification
title The Convergence of Iterated Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Convergence%20of%20Iterated%20Classification&rft.btitle=2008%20The%20Eighth%20IAPR%20International%20Workshop%20on%20Document%20Analysis%20Systems&rft.au=Chang%20An&rft.date=2008-09&rft.spage=663&rft.epage=670&rft.pages=663-670&rft.isbn=076953337X&rft.isbn_list=9780769533377&rft_id=info:doi/10.1109/DAS.2008.52&rft_dat=%3Cieee_6IE%3E4670019%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4670019&rfr_iscdi=true