Knee Point Detection on Bayesian Information Criterion
The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | |
container_start_page | 431 |
container_title | |
container_volume | 2 |
creator | Qinpei Zhao Mantao Xu Franti, P. |
description | The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach. |
doi_str_mv | 10.1109/ICTAI.2008.154 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4669805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4669805</ieee_id><sourcerecordid>4669805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i215t-612d70951a4250d92fca10bb8f19091635f61fdbfbe1c663e1201ee120f1733a3</originalsourceid><addsrcrecordid>eNotjElLxEAUhBsXMI5z9eIlfyDxvV5ep49j3IIDehjPQyd5DS1OIp1c5t8bFyiqPoqihLhGKBHB3Tb1btOUEqAq0egTkUllTQHo7Km4BEvOKK2BzkSGUMlCaXAXYj1NHwDLiCwYnQl6GZjztzEOc37PM3dzHId80Z0_8hT9kDdDGNPB__Z1ijOnha7EefCfE6__cyXeHx929XOxfX1q6s22iBLNXBDK3oIz6LU00DsZOo_QtlVABw5JmUAY-ja0jB2RYpSA_OMBrVJercTN329k5v1XigefjntN5Cow6huHCUZO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Knee Point Detection on Bayesian Information Criterion</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qinpei Zhao ; Mantao Xu ; Franti, P.</creator><creatorcontrib>Qinpei Zhao ; Mantao Xu ; Franti, P.</creatorcontrib><description>The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 0769534406</identifier><identifier>ISBN: 9780769534404</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/ICTAI.2008.154</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Bayesian methods ; Clustering algorithms ; Computer science ; Detection algorithms ; Image processing ; Knee ; Parameter estimation ; Speech analysis ; Speech processing</subject><ispartof>2008 20th IEEE International Conference on Tools with Artificial Intelligence, 2008, Vol.2, p.431-438</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4669805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4669805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qinpei Zhao</creatorcontrib><creatorcontrib>Mantao Xu</creatorcontrib><creatorcontrib>Franti, P.</creatorcontrib><title>Knee Point Detection on Bayesian Information Criterion</title><title>2008 20th IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>ICTAI</addtitle><description>The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach.</description><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>Detection algorithms</subject><subject>Image processing</subject><subject>Knee</subject><subject>Parameter estimation</subject><subject>Speech analysis</subject><subject>Speech processing</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>0769534406</isbn><isbn>9780769534404</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjElLxEAUhBsXMI5z9eIlfyDxvV5ep49j3IIDehjPQyd5DS1OIp1c5t8bFyiqPoqihLhGKBHB3Tb1btOUEqAq0egTkUllTQHo7Km4BEvOKK2BzkSGUMlCaXAXYj1NHwDLiCwYnQl6GZjztzEOc37PM3dzHId80Z0_8hT9kDdDGNPB__Z1ijOnha7EefCfE6__cyXeHx929XOxfX1q6s22iBLNXBDK3oIz6LU00DsZOo_QtlVABw5JmUAY-ja0jB2RYpSA_OMBrVJercTN329k5v1XigefjntN5Cow6huHCUZO</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Qinpei Zhao</creator><creator>Mantao Xu</creator><creator>Franti, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Knee Point Detection on Bayesian Information Criterion</title><author>Qinpei Zhao ; Mantao Xu ; Franti, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i215t-612d70951a4250d92fca10bb8f19091635f61fdbfbe1c663e1201ee120f1733a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>Detection algorithms</topic><topic>Image processing</topic><topic>Knee</topic><topic>Parameter estimation</topic><topic>Speech analysis</topic><topic>Speech processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Qinpei Zhao</creatorcontrib><creatorcontrib>Mantao Xu</creatorcontrib><creatorcontrib>Franti, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qinpei Zhao</au><au>Mantao Xu</au><au>Franti, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Knee Point Detection on Bayesian Information Criterion</atitle><btitle>2008 20th IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>ICTAI</stitle><date>2008-01-01</date><risdate>2008</risdate><volume>2</volume><spage>431</spage><epage>438</epage><pages>431-438</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>0769534406</isbn><isbn>9780769534404</isbn><abstract>The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2008.154</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3409 |
ispartof | 2008 20th IEEE International Conference on Tools with Artificial Intelligence, 2008, Vol.2, p.431-438 |
issn | 1082-3409 2375-0197 |
language | eng |
recordid | cdi_ieee_primary_4669805 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Bayesian methods Clustering algorithms Computer science Detection algorithms Image processing Knee Parameter estimation Speech analysis Speech processing |
title | Knee Point Detection on Bayesian Information Criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Knee%20Point%20Detection%20on%20Bayesian%20Information%20Criterion&rft.btitle=2008%2020th%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Qinpei%20Zhao&rft.date=2008-01-01&rft.volume=2&rft.spage=431&rft.epage=438&rft.pages=431-438&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=0769534406&rft.isbn_list=9780769534404&rft_id=info:doi/10.1109/ICTAI.2008.154&rft_dat=%3Cieee_6IE%3E4669805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4669805&rfr_iscdi=true |