Knee Point Detection on Bayesian Information Criterion

The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qinpei Zhao, Mantao Xu, Franti, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue
container_start_page 431
container_title
container_volume 2
creator Qinpei Zhao
Mantao Xu
Franti, P.
description The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach.
doi_str_mv 10.1109/ICTAI.2008.154
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4669805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4669805</ieee_id><sourcerecordid>4669805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i215t-612d70951a4250d92fca10bb8f19091635f61fdbfbe1c663e1201ee120f1733a3</originalsourceid><addsrcrecordid>eNotjElLxEAUhBsXMI5z9eIlfyDxvV5ep49j3IIDehjPQyd5DS1OIp1c5t8bFyiqPoqihLhGKBHB3Tb1btOUEqAq0egTkUllTQHo7Km4BEvOKK2BzkSGUMlCaXAXYj1NHwDLiCwYnQl6GZjztzEOc37PM3dzHId80Z0_8hT9kDdDGNPB__Z1ijOnha7EefCfE6__cyXeHx929XOxfX1q6s22iBLNXBDK3oIz6LU00DsZOo_QtlVABw5JmUAY-ja0jB2RYpSA_OMBrVJercTN329k5v1XigefjntN5Cow6huHCUZO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Knee Point Detection on Bayesian Information Criterion</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qinpei Zhao ; Mantao Xu ; Franti, P.</creator><creatorcontrib>Qinpei Zhao ; Mantao Xu ; Franti, P.</creatorcontrib><description>The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 0769534406</identifier><identifier>ISBN: 9780769534404</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/ICTAI.2008.154</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Bayesian methods ; Clustering algorithms ; Computer science ; Detection algorithms ; Image processing ; Knee ; Parameter estimation ; Speech analysis ; Speech processing</subject><ispartof>2008 20th IEEE International Conference on Tools with Artificial Intelligence, 2008, Vol.2, p.431-438</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4669805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4669805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qinpei Zhao</creatorcontrib><creatorcontrib>Mantao Xu</creatorcontrib><creatorcontrib>Franti, P.</creatorcontrib><title>Knee Point Detection on Bayesian Information Criterion</title><title>2008 20th IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>ICTAI</addtitle><description>The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach.</description><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>Detection algorithms</subject><subject>Image processing</subject><subject>Knee</subject><subject>Parameter estimation</subject><subject>Speech analysis</subject><subject>Speech processing</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>0769534406</isbn><isbn>9780769534404</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjElLxEAUhBsXMI5z9eIlfyDxvV5ep49j3IIDehjPQyd5DS1OIp1c5t8bFyiqPoqihLhGKBHB3Tb1btOUEqAq0egTkUllTQHo7Km4BEvOKK2BzkSGUMlCaXAXYj1NHwDLiCwYnQl6GZjztzEOc37PM3dzHId80Z0_8hT9kDdDGNPB__Z1ijOnha7EefCfE6__cyXeHx929XOxfX1q6s22iBLNXBDK3oIz6LU00DsZOo_QtlVABw5JmUAY-ja0jB2RYpSA_OMBrVJercTN329k5v1XigefjntN5Cow6huHCUZO</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Qinpei Zhao</creator><creator>Mantao Xu</creator><creator>Franti, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Knee Point Detection on Bayesian Information Criterion</title><author>Qinpei Zhao ; Mantao Xu ; Franti, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i215t-612d70951a4250d92fca10bb8f19091635f61fdbfbe1c663e1201ee120f1733a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>Detection algorithms</topic><topic>Image processing</topic><topic>Knee</topic><topic>Parameter estimation</topic><topic>Speech analysis</topic><topic>Speech processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Qinpei Zhao</creatorcontrib><creatorcontrib>Mantao Xu</creatorcontrib><creatorcontrib>Franti, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qinpei Zhao</au><au>Mantao Xu</au><au>Franti, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Knee Point Detection on Bayesian Information Criterion</atitle><btitle>2008 20th IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>ICTAI</stitle><date>2008-01-01</date><risdate>2008</risdate><volume>2</volume><spage>431</spage><epage>438</epage><pages>431-438</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>0769534406</isbn><isbn>9780769534404</isbn><abstract>The main challenge of cluster analysis is that the number of clusters or the number of model parameters is seldom known, and it must therefore be determined before clustering. Bayesian information criterion (BIC) often serves as a statistical criterion for model selection, which can also be used in solving model-based clustering problems, in particular for determining the number of clusters. Conventionally, a correct number of clusters can be identified as the first decisive local maximum of BIC; however, this is intractable due to the overtraining problem and inefficiency of clustering algorithms. To circumvent this limitation, we proposed a novel method for identifying the number of clusters by detecting the knee point of the resulting BIC curve instead. Experiments demonstrated that the proposed method is able to detect the correct number of clusters more robustly and accurately than the conventional approach.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2008.154</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof 2008 20th IEEE International Conference on Tools with Artificial Intelligence, 2008, Vol.2, p.431-438
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_4669805
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Bayesian methods
Clustering algorithms
Computer science
Detection algorithms
Image processing
Knee
Parameter estimation
Speech analysis
Speech processing
title Knee Point Detection on Bayesian Information Criterion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Knee%20Point%20Detection%20on%20Bayesian%20Information%20Criterion&rft.btitle=2008%2020th%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Qinpei%20Zhao&rft.date=2008-01-01&rft.volume=2&rft.spage=431&rft.epage=438&rft.pages=431-438&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=0769534406&rft.isbn_list=9780769534404&rft_id=info:doi/10.1109/ICTAI.2008.154&rft_dat=%3Cieee_6IE%3E4669805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4669805&rfr_iscdi=true