A New Algorithm for Robot Path Planning Based on Scout Ant Cooperation
A new ant algorithm for robot path planning is presented according to the latest achievements of research on actual ants. In this algorithm, m scout ants collaborate with each other to search for an optimal or near-optimal path. Of m scout ants, n ants adopt nearest-neighbor search strategy and the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | |
container_start_page | 444 |
container_title | |
container_volume | 7 |
creator | Qingbao Zhu Lingling Wang |
description | A new ant algorithm for robot path planning is presented according to the latest achievements of research on actual ants. In this algorithm, m scout ants collaborate with each other to search for an optimal or near-optimal path. Of m scout ants, n ants adopt nearest-neighbor search strategy and the left q=m-n ants adopt random search strategy. A section of optimal path will be found after all ants search L steps. Then m ants regard the end point of as the new starting point and search for L steps to find the next section of optimal path . Repeat this process until one of m ants reaches the goal. In this way, the path is consisted of h sections of path with step length L. Carry out the next generation search after step length L is modified, then repeat the searching course mentioned above. An optimal or near-optimal path will be found through comparison after multi-generation of searching. The simulation experiment results show that an optimal or near-optimal path can be planned even in environment with very complex obstacles, which can meet the requirements of real-time planning or navigation. The effect is quite satisfying. |
doi_str_mv | 10.1109/ICNC.2008.185 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4668017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4668017</ieee_id><sourcerecordid>4668017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-27c341e6798b82a936c172d04219a5865d5c620375d0f3cb26ecd3b2d7366a323</originalsourceid><addsrcrecordid>eNotzE9LwzAYgPGADpyzR09e8gVa3yRN3uRYi5uDMYd_ziNt0y3SJaONiN9eRE_P5cdDyC2DgjEw9-t6WxccQBdMywuSGdSAykghoDSXZM6ZxNxIKWfk-pcZKJnmVySbpg8AEAwRwczJsqJb90Wr4RBHn44n2seRvsQmJrqz6Uh3gw3BhwN9sJPraAz0tY2fiVYh0TrGsxtt8jHckFlvh8ll_12Q9-XjW_2Ub55X67ra5J6hTDnHVpTMKTS60dwaoVqGvIOSM2OlVrKTreIgUHbQi7bhyrWdaHiHQikruFiQu7-vd87tz6M_2fF7XyqlgaH4AdPES10</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New Algorithm for Robot Path Planning Based on Scout Ant Cooperation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qingbao Zhu ; Lingling Wang</creator><creatorcontrib>Qingbao Zhu ; Lingling Wang</creatorcontrib><description>A new ant algorithm for robot path planning is presented according to the latest achievements of research on actual ants. In this algorithm, m scout ants collaborate with each other to search for an optimal or near-optimal path. Of m scout ants, n ants adopt nearest-neighbor search strategy and the left q=m-n ants adopt random search strategy. A section of optimal path will be found after all ants search L steps. Then m ants regard the end point of as the new starting point and search for L steps to find the next section of optimal path . Repeat this process until one of m ants reaches the goal. In this way, the path is consisted of h sections of path with step length L. Carry out the next generation search after step length L is modified, then repeat the searching course mentioned above. An optimal or near-optimal path will be found through comparison after multi-generation of searching. The simulation experiment results show that an optimal or near-optimal path can be planned even in environment with very complex obstacles, which can meet the requirements of real-time planning or navigation. The effect is quite satisfying.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9780769533049</identifier><identifier>ISBN: 0769533043</identifier><identifier>DOI: 10.1109/ICNC.2008.185</identifier><identifier>LCCN: 2008904182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ant algorithm ; Collaboration ; Convergence ; Cooperation ; Mathematics ; Meeting planning ; Mobile robot ; Mobile robots ; Navigation ; Orbital robotics ; Path planning ; Robot kinematics ; Scout ant ; Space technology</subject><ispartof>2008 Fourth International Conference on Natural Computation, 2008, Vol.7, p.444-449</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4668017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4668017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qingbao Zhu</creatorcontrib><creatorcontrib>Lingling Wang</creatorcontrib><title>A New Algorithm for Robot Path Planning Based on Scout Ant Cooperation</title><title>2008 Fourth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>A new ant algorithm for robot path planning is presented according to the latest achievements of research on actual ants. In this algorithm, m scout ants collaborate with each other to search for an optimal or near-optimal path. Of m scout ants, n ants adopt nearest-neighbor search strategy and the left q=m-n ants adopt random search strategy. A section of optimal path will be found after all ants search L steps. Then m ants regard the end point of as the new starting point and search for L steps to find the next section of optimal path . Repeat this process until one of m ants reaches the goal. In this way, the path is consisted of h sections of path with step length L. Carry out the next generation search after step length L is modified, then repeat the searching course mentioned above. An optimal or near-optimal path will be found through comparison after multi-generation of searching. The simulation experiment results show that an optimal or near-optimal path can be planned even in environment with very complex obstacles, which can meet the requirements of real-time planning or navigation. The effect is quite satisfying.</description><subject>Ant algorithm</subject><subject>Collaboration</subject><subject>Convergence</subject><subject>Cooperation</subject><subject>Mathematics</subject><subject>Meeting planning</subject><subject>Mobile robot</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Orbital robotics</subject><subject>Path planning</subject><subject>Robot kinematics</subject><subject>Scout ant</subject><subject>Space technology</subject><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzE9LwzAYgPGADpyzR09e8gVa3yRN3uRYi5uDMYd_ziNt0y3SJaONiN9eRE_P5cdDyC2DgjEw9-t6WxccQBdMywuSGdSAykghoDSXZM6ZxNxIKWfk-pcZKJnmVySbpg8AEAwRwczJsqJb90Wr4RBHn44n2seRvsQmJrqz6Uh3gw3BhwN9sJPraAz0tY2fiVYh0TrGsxtt8jHckFlvh8ll_12Q9-XjW_2Ub55X67ra5J6hTDnHVpTMKTS60dwaoVqGvIOSM2OlVrKTreIgUHbQi7bhyrWdaHiHQikruFiQu7-vd87tz6M_2fF7XyqlgaH4AdPES10</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Qingbao Zhu</creator><creator>Lingling Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>A New Algorithm for Robot Path Planning Based on Scout Ant Cooperation</title><author>Qingbao Zhu ; Lingling Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-27c341e6798b82a936c172d04219a5865d5c620375d0f3cb26ecd3b2d7366a323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ant algorithm</topic><topic>Collaboration</topic><topic>Convergence</topic><topic>Cooperation</topic><topic>Mathematics</topic><topic>Meeting planning</topic><topic>Mobile robot</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Orbital robotics</topic><topic>Path planning</topic><topic>Robot kinematics</topic><topic>Scout ant</topic><topic>Space technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Qingbao Zhu</creatorcontrib><creatorcontrib>Lingling Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qingbao Zhu</au><au>Lingling Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New Algorithm for Robot Path Planning Based on Scout Ant Cooperation</atitle><btitle>2008 Fourth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2008-10</date><risdate>2008</risdate><volume>7</volume><spage>444</spage><epage>449</epage><pages>444-449</pages><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><abstract>A new ant algorithm for robot path planning is presented according to the latest achievements of research on actual ants. In this algorithm, m scout ants collaborate with each other to search for an optimal or near-optimal path. Of m scout ants, n ants adopt nearest-neighbor search strategy and the left q=m-n ants adopt random search strategy. A section of optimal path will be found after all ants search L steps. Then m ants regard the end point of as the new starting point and search for L steps to find the next section of optimal path . Repeat this process until one of m ants reaches the goal. In this way, the path is consisted of h sections of path with step length L. Carry out the next generation search after step length L is modified, then repeat the searching course mentioned above. An optimal or near-optimal path will be found through comparison after multi-generation of searching. The simulation experiment results show that an optimal or near-optimal path can be planned even in environment with very complex obstacles, which can meet the requirements of real-time planning or navigation. The effect is quite satisfying.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2008.185</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2008 Fourth International Conference on Natural Computation, 2008, Vol.7, p.444-449 |
issn | 2157-9555 |
language | eng |
recordid | cdi_ieee_primary_4668017 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ant algorithm Collaboration Convergence Cooperation Mathematics Meeting planning Mobile robot Mobile robots Navigation Orbital robotics Path planning Robot kinematics Scout ant Space technology |
title | A New Algorithm for Robot Path Planning Based on Scout Ant Cooperation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20Algorithm%20for%20Robot%20Path%20Planning%20Based%20on%20Scout%20Ant%20Cooperation&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Natural%20Computation&rft.au=Qingbao%20Zhu&rft.date=2008-10&rft.volume=7&rft.spage=444&rft.epage=449&rft.pages=444-449&rft.issn=2157-9555&rft.isbn=9780769533049&rft.isbn_list=0769533043&rft_id=info:doi/10.1109/ICNC.2008.185&rft_dat=%3Cieee_6IE%3E4668017%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4668017&rfr_iscdi=true |