Indexing visual representations through the complexity map

In differential geometry curves are characterized as mappings from an interval to the plane. In topology curves are characterized as a Hausdorff space with certain countability properties. Neither of these definitions captures the role that curves play in vision, however, in which curves can denote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dubuc, B., Zucker, S.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 142
container_title
container_volume
creator Dubuc, B.
Zucker, S.W.
description In differential geometry curves are characterized as mappings from an interval to the plane. In topology curves are characterized as a Hausdorff space with certain countability properties. Neither of these definitions captures the role that curves play in vision, however, in which curves can denote simple objects (such as a straight line), or complicated objects (such as a jumble of string). The difference between these situations is in part a measure of their complexity, and in part a measure of their dimensionality. Note that the map defining such curves is unknown, as is the proper way to represent them. We propose a formal complexity theory of curves appropriate for computational vision in general, and for problems like separating straight lines from jumbles in particular. The theory is applied to the problem of perceptual grouping.< >
doi_str_mv 10.1109/ICCV.1995.466794
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_466794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>466794</ieee_id><sourcerecordid>466794</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-e2f2a29ed572bf9452847f68aa6d1f0a1ab6e52838ac320fbe40eda00f6be9ee3</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0JJ6X7rSD9i9kmU9uiumD0OgmybbcB1fJSp-YTml-fsaktkcGIYZhrFHAZkQ4J6rstxmwrkiU1obp25Y4owFK6w2oKS9Y0mMP7BIFcKp4p69VH1Df6E_8N8QT9jyicaJIvUzzmHoI5-P03A6HBcS3w_d2C7p-cw7HB_Yrcc2UnLlim3e377Lz3T99VGVr-s0CFBzStJLlI6awsjaL6PSKuO1RdSN8IACa02LmVvc5xJ8TQqoQQCva3JE-Yo9XXoDEe3GKXQ4nXeXg_k_5otHiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indexing visual representations through the complexity map</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dubuc, B. ; Zucker, S.W.</creator><creatorcontrib>Dubuc, B. ; Zucker, S.W.</creatorcontrib><description>In differential geometry curves are characterized as mappings from an interval to the plane. In topology curves are characterized as a Hausdorff space with certain countability properties. Neither of these definitions captures the role that curves play in vision, however, in which curves can denote simple objects (such as a straight line), or complicated objects (such as a jumble of string). The difference between these situations is in part a measure of their complexity, and in part a measure of their dimensionality. Note that the map defining such curves is unknown, as is the proper way to represent them. We propose a formal complexity theory of curves appropriate for computational vision in general, and for problems like separating straight lines from jumbles in particular. The theory is applied to the problem of perceptual grouping.&lt; &gt;</description><identifier>ISBN: 9780818670428</identifier><identifier>ISBN: 0818670428</identifier><identifier>DOI: 10.1109/ICCV.1995.466794</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Area measurement ; Complexity theory ; Computer vision ; Detectors ; Geometry ; Hair ; Image edge detection ; Indexing ; Length measurement ; Topology</subject><ispartof>Proceedings of IEEE International Conference on Computer Vision, 1995, p.142-149</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/466794$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/466794$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dubuc, B.</creatorcontrib><creatorcontrib>Zucker, S.W.</creatorcontrib><title>Indexing visual representations through the complexity map</title><title>Proceedings of IEEE International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>In differential geometry curves are characterized as mappings from an interval to the plane. In topology curves are characterized as a Hausdorff space with certain countability properties. Neither of these definitions captures the role that curves play in vision, however, in which curves can denote simple objects (such as a straight line), or complicated objects (such as a jumble of string). The difference between these situations is in part a measure of their complexity, and in part a measure of their dimensionality. Note that the map defining such curves is unknown, as is the proper way to represent them. We propose a formal complexity theory of curves appropriate for computational vision in general, and for problems like separating straight lines from jumbles in particular. The theory is applied to the problem of perceptual grouping.&lt; &gt;</description><subject>Area measurement</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Detectors</subject><subject>Geometry</subject><subject>Hair</subject><subject>Image edge detection</subject><subject>Indexing</subject><subject>Length measurement</subject><subject>Topology</subject><isbn>9780818670428</isbn><isbn>0818670428</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0JJ6X7rSD9i9kmU9uiumD0OgmybbcB1fJSp-YTml-fsaktkcGIYZhrFHAZkQ4J6rstxmwrkiU1obp25Y4owFK6w2oKS9Y0mMP7BIFcKp4p69VH1Df6E_8N8QT9jyicaJIvUzzmHoI5-P03A6HBcS3w_d2C7p-cw7HB_Yrcc2UnLlim3e377Lz3T99VGVr-s0CFBzStJLlI6awsjaL6PSKuO1RdSN8IACa02LmVvc5xJ8TQqoQQCva3JE-Yo9XXoDEe3GKXQ4nXeXg_k_5otHiA</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Dubuc, B.</creator><creator>Zucker, S.W.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Indexing visual representations through the complexity map</title><author>Dubuc, B. ; Zucker, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-e2f2a29ed572bf9452847f68aa6d1f0a1ab6e52838ac320fbe40eda00f6be9ee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Area measurement</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Detectors</topic><topic>Geometry</topic><topic>Hair</topic><topic>Image edge detection</topic><topic>Indexing</topic><topic>Length measurement</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Dubuc, B.</creatorcontrib><creatorcontrib>Zucker, S.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubuc, B.</au><au>Zucker, S.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indexing visual representations through the complexity map</atitle><btitle>Proceedings of IEEE International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>1995</date><risdate>1995</risdate><spage>142</spage><epage>149</epage><pages>142-149</pages><isbn>9780818670428</isbn><isbn>0818670428</isbn><abstract>In differential geometry curves are characterized as mappings from an interval to the plane. In topology curves are characterized as a Hausdorff space with certain countability properties. Neither of these definitions captures the role that curves play in vision, however, in which curves can denote simple objects (such as a straight line), or complicated objects (such as a jumble of string). The difference between these situations is in part a measure of their complexity, and in part a measure of their dimensionality. Note that the map defining such curves is unknown, as is the proper way to represent them. We propose a formal complexity theory of curves appropriate for computational vision in general, and for problems like separating straight lines from jumbles in particular. The theory is applied to the problem of perceptual grouping.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ICCV.1995.466794</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818670428
ispartof Proceedings of IEEE International Conference on Computer Vision, 1995, p.142-149
issn
language eng
recordid cdi_ieee_primary_466794
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Area measurement
Complexity theory
Computer vision
Detectors
Geometry
Hair
Image edge detection
Indexing
Length measurement
Topology
title Indexing visual representations through the complexity map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indexing%20visual%20representations%20through%20the%20complexity%20map&rft.btitle=Proceedings%20of%20IEEE%20International%20Conference%20on%20Computer%20Vision&rft.au=Dubuc,%20B.&rft.date=1995&rft.spage=142&rft.epage=149&rft.pages=142-149&rft.isbn=9780818670428&rft.isbn_list=0818670428&rft_id=info:doi/10.1109/ICCV.1995.466794&rft_dat=%3Cieee_6IE%3E466794%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=466794&rfr_iscdi=true