The Noise Reduction of Structural Multichannel Signals Based on Independent Component Analysis
In practice, there are various noises mixed into structural vibration signals and the useful signals maybe covered up by noise. Independent component analysis (ICA) is one kind of effectual signal processing technology. Using of this method, the multichannel signals can be separated into some indepe...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 637 |
---|---|
container_issue | |
container_start_page | 633 |
container_title | |
container_volume | 5 |
creator | Yan Yang Hai-qing Yuan Ji Wang |
description | In practice, there are various noises mixed into structural vibration signals and the useful signals maybe covered up by noise. Independent component analysis (ICA) is one kind of effectual signal processing technology. Using of this method, the multichannel signals can be separated into some independent components. Because noise and vibration signal are statistical independent to each other, the ICA method is introduced to denoise the structural vibration signals. A noise channel is added to amplify the sensor signals to satisfy the calculation condition of ICA. Because the noise is unknown, the usual method simulating noises by numerical dummy channel needs to adjust the noise type unceasingly to obtain the perfect denoising effect. In this paper, an actual testing noise channel substitutes for the simulating channel. In the laboratory, a sensor, static relatively to the ground, is placed outside the vibration structure and regarded as noise channel. The signals of vibration experiment are processed by ICA. The effect of noise reduction compared with wavelet is satisfied and the denoised signals do not change its dynamic characteristic. |
doi_str_mv | 10.1109/ICNC.2008.798 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4667513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4667513</ieee_id><sourcerecordid>4667513</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-eb5ea952734b8458a59d895440a1360860a2558d74d5634e95a0b8aa036593ed3</originalsourceid><addsrcrecordid>eNotzEtPAjEUBeAmSiIiS1du-gcGb6e9fSxx4oMEMRHcSgq9SM3YIdNhwb93iG7uOSf5chm7FTARAtz9rFpUkxLAToyzF2zsjAWjHUoJyl2yYSnQFA4RB-z6zBwoYcsrNs75GwCkMMaAG7LP1Z74oomZ-DuF47aLTeLNji-7th_H1tf89Vh3cbv3KVHNl_Er-TrzB58p8N7OUqAD9Sd1vGp-Dk06t2mPTjnmGzbY9ZzG_zliH0-Pq-qlmL89z6rpvIjCYFfQBsk7LI1UG6vQenTBOlQKvJAarAZfItpgVEAtFTn0sLHeg9ToJAU5Ynd_fyMRrQ9t_PHtaa20Niik_AW49lV-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Noise Reduction of Structural Multichannel Signals Based on Independent Component Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yan Yang ; Hai-qing Yuan ; Ji Wang</creator><creatorcontrib>Yan Yang ; Hai-qing Yuan ; Ji Wang</creatorcontrib><description>In practice, there are various noises mixed into structural vibration signals and the useful signals maybe covered up by noise. Independent component analysis (ICA) is one kind of effectual signal processing technology. Using of this method, the multichannel signals can be separated into some independent components. Because noise and vibration signal are statistical independent to each other, the ICA method is introduced to denoise the structural vibration signals. A noise channel is added to amplify the sensor signals to satisfy the calculation condition of ICA. Because the noise is unknown, the usual method simulating noises by numerical dummy channel needs to adjust the noise type unceasingly to obtain the perfect denoising effect. In this paper, an actual testing noise channel substitutes for the simulating channel. In the laboratory, a sensor, static relatively to the ground, is placed outside the vibration structure and regarded as noise channel. The signals of vibration experiment are processed by ICA. The effect of noise reduction compared with wavelet is satisfied and the denoised signals do not change its dynamic characteristic.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9780769533049</identifier><identifier>ISBN: 0769533043</identifier><identifier>DOI: 10.1109/ICNC.2008.798</identifier><identifier>LCCN: 2008904182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Frequency ; Independent component analysis ; Laboratories ; multichannel signal processing ; Noise reduction ; Numerical simulation ; Optical computing ; Optical fibers ; Optical noise ; Signal processing ; Testing</subject><ispartof>2008 Fourth International Conference on Natural Computation, 2008, Vol.5, p.633-637</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4667513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4667513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan Yang</creatorcontrib><creatorcontrib>Hai-qing Yuan</creatorcontrib><creatorcontrib>Ji Wang</creatorcontrib><title>The Noise Reduction of Structural Multichannel Signals Based on Independent Component Analysis</title><title>2008 Fourth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>In practice, there are various noises mixed into structural vibration signals and the useful signals maybe covered up by noise. Independent component analysis (ICA) is one kind of effectual signal processing technology. Using of this method, the multichannel signals can be separated into some independent components. Because noise and vibration signal are statistical independent to each other, the ICA method is introduced to denoise the structural vibration signals. A noise channel is added to amplify the sensor signals to satisfy the calculation condition of ICA. Because the noise is unknown, the usual method simulating noises by numerical dummy channel needs to adjust the noise type unceasingly to obtain the perfect denoising effect. In this paper, an actual testing noise channel substitutes for the simulating channel. In the laboratory, a sensor, static relatively to the ground, is placed outside the vibration structure and regarded as noise channel. The signals of vibration experiment are processed by ICA. The effect of noise reduction compared with wavelet is satisfied and the denoised signals do not change its dynamic characteristic.</description><subject>Frequency</subject><subject>Independent component analysis</subject><subject>Laboratories</subject><subject>multichannel signal processing</subject><subject>Noise reduction</subject><subject>Numerical simulation</subject><subject>Optical computing</subject><subject>Optical fibers</subject><subject>Optical noise</subject><subject>Signal processing</subject><subject>Testing</subject><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzEtPAjEUBeAmSiIiS1du-gcGb6e9fSxx4oMEMRHcSgq9SM3YIdNhwb93iG7uOSf5chm7FTARAtz9rFpUkxLAToyzF2zsjAWjHUoJyl2yYSnQFA4RB-z6zBwoYcsrNs75GwCkMMaAG7LP1Z74oomZ-DuF47aLTeLNji-7th_H1tf89Vh3cbv3KVHNl_Er-TrzB58p8N7OUqAD9Sd1vGp-Dk06t2mPTjnmGzbY9ZzG_zliH0-Pq-qlmL89z6rpvIjCYFfQBsk7LI1UG6vQenTBOlQKvJAarAZfItpgVEAtFTn0sLHeg9ToJAU5Ynd_fyMRrQ9t_PHtaa20Niik_AW49lV-</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Yan Yang</creator><creator>Hai-qing Yuan</creator><creator>Ji Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>The Noise Reduction of Structural Multichannel Signals Based on Independent Component Analysis</title><author>Yan Yang ; Hai-qing Yuan ; Ji Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-eb5ea952734b8458a59d895440a1360860a2558d74d5634e95a0b8aa036593ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Frequency</topic><topic>Independent component analysis</topic><topic>Laboratories</topic><topic>multichannel signal processing</topic><topic>Noise reduction</topic><topic>Numerical simulation</topic><topic>Optical computing</topic><topic>Optical fibers</topic><topic>Optical noise</topic><topic>Signal processing</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan Yang</creatorcontrib><creatorcontrib>Hai-qing Yuan</creatorcontrib><creatorcontrib>Ji Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan Yang</au><au>Hai-qing Yuan</au><au>Ji Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Noise Reduction of Structural Multichannel Signals Based on Independent Component Analysis</atitle><btitle>2008 Fourth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2008-10</date><risdate>2008</risdate><volume>5</volume><spage>633</spage><epage>637</epage><pages>633-637</pages><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><abstract>In practice, there are various noises mixed into structural vibration signals and the useful signals maybe covered up by noise. Independent component analysis (ICA) is one kind of effectual signal processing technology. Using of this method, the multichannel signals can be separated into some independent components. Because noise and vibration signal are statistical independent to each other, the ICA method is introduced to denoise the structural vibration signals. A noise channel is added to amplify the sensor signals to satisfy the calculation condition of ICA. Because the noise is unknown, the usual method simulating noises by numerical dummy channel needs to adjust the noise type unceasingly to obtain the perfect denoising effect. In this paper, an actual testing noise channel substitutes for the simulating channel. In the laboratory, a sensor, static relatively to the ground, is placed outside the vibration structure and regarded as noise channel. The signals of vibration experiment are processed by ICA. The effect of noise reduction compared with wavelet is satisfied and the denoised signals do not change its dynamic characteristic.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2008.798</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2008 Fourth International Conference on Natural Computation, 2008, Vol.5, p.633-637 |
issn | 2157-9555 |
language | eng |
recordid | cdi_ieee_primary_4667513 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Frequency Independent component analysis Laboratories multichannel signal processing Noise reduction Numerical simulation Optical computing Optical fibers Optical noise Signal processing Testing |
title | The Noise Reduction of Structural Multichannel Signals Based on Independent Component Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Noise%20Reduction%20of%20Structural%20Multichannel%20Signals%20Based%20on%20Independent%20Component%20Analysis&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Natural%20Computation&rft.au=Yan%20Yang&rft.date=2008-10&rft.volume=5&rft.spage=633&rft.epage=637&rft.pages=633-637&rft.issn=2157-9555&rft.isbn=9780769533049&rft.isbn_list=0769533043&rft_id=info:doi/10.1109/ICNC.2008.798&rft_dat=%3Cieee_6IE%3E4667513%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4667513&rfr_iscdi=true |