Image Noise Removal via Wavelet Transform and r/K-PSO
Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | |
container_start_page | 544 |
container_title | |
container_volume | 5 |
creator | Yunyi Yan Baolong Guo Zhanlong Yang Xiang Fu |
description | Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR). |
doi_str_mv | 10.1109/ICNC.2008.608 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4667494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4667494</ieee_id><sourcerecordid>4667494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d7d13635f8adbf9ecc651ed9bff9704b60eb2b9f786b2fd9f6edf3d1338511543</originalsourceid><addsrcrecordid>eNotjMtKw0AUQAe0YK1ZunIzP5D0TuZ5lxJ8BEsrGnBZZjp3JJI0kpSAf6-iq7M55zB2LaAQAnBdV9uqKAFcYcCdsQytA2tQSwkKz9myFNrmqLVesMtfDUEJV16wbJo-AEAKay3gkum69-_Et0M7EX-hfph9x-fW8zc_U0cn3oz-OKVh7Lk_Rj6un_Ln190VWyTfTZT9c8Wa-7umesw3u4e6ut3kLcIpjzYKaaROzseQkA4HowVFDCmhBRUMUCgDJutMKFPEZCgm-dNIp4XQSq7Yzd-2JaL959j2fvzaK2OsQiW_AXJNRqQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Noise Removal via Wavelet Transform and r/K-PSO</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yunyi Yan ; Baolong Guo ; Zhanlong Yang ; Xiang Fu</creator><creatorcontrib>Yunyi Yan ; Baolong Guo ; Zhanlong Yang ; Xiang Fu</creatorcontrib><description>Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR).</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9780769533049</identifier><identifier>ISBN: 0769533043</identifier><identifier>DOI: 10.1109/ICNC.2008.608</identifier><identifier>LCCN: 2008904182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Environmental factors ; Filtering ; Frequency domain analysis ; Organisms ; Particle swarm optimization ; Productivity ; PSNR ; Wavelet domain ; Wavelet transforms ; Wiener filter</subject><ispartof>2008 Fourth International Conference on Natural Computation, 2008, Vol.5, p.544-548</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4667494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4667494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yunyi Yan</creatorcontrib><creatorcontrib>Baolong Guo</creatorcontrib><creatorcontrib>Zhanlong Yang</creatorcontrib><creatorcontrib>Xiang Fu</creatorcontrib><title>Image Noise Removal via Wavelet Transform and r/K-PSO</title><title>2008 Fourth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR).</description><subject>Environmental factors</subject><subject>Filtering</subject><subject>Frequency domain analysis</subject><subject>Organisms</subject><subject>Particle swarm optimization</subject><subject>Productivity</subject><subject>PSNR</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><subject>Wiener filter</subject><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKw0AUQAe0YK1ZunIzP5D0TuZ5lxJ8BEsrGnBZZjp3JJI0kpSAf6-iq7M55zB2LaAQAnBdV9uqKAFcYcCdsQytA2tQSwkKz9myFNrmqLVesMtfDUEJV16wbJo-AEAKay3gkum69-_Et0M7EX-hfph9x-fW8zc_U0cn3oz-OKVh7Lk_Rj6un_Ln190VWyTfTZT9c8Wa-7umesw3u4e6ut3kLcIpjzYKaaROzseQkA4HowVFDCmhBRUMUCgDJutMKFPEZCgm-dNIp4XQSq7Yzd-2JaL959j2fvzaK2OsQiW_AXJNRqQ</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Yunyi Yan</creator><creator>Baolong Guo</creator><creator>Zhanlong Yang</creator><creator>Xiang Fu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Image Noise Removal via Wavelet Transform and r/K-PSO</title><author>Yunyi Yan ; Baolong Guo ; Zhanlong Yang ; Xiang Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d7d13635f8adbf9ecc651ed9bff9704b60eb2b9f786b2fd9f6edf3d1338511543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Environmental factors</topic><topic>Filtering</topic><topic>Frequency domain analysis</topic><topic>Organisms</topic><topic>Particle swarm optimization</topic><topic>Productivity</topic><topic>PSNR</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Yunyi Yan</creatorcontrib><creatorcontrib>Baolong Guo</creatorcontrib><creatorcontrib>Zhanlong Yang</creatorcontrib><creatorcontrib>Xiang Fu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yunyi Yan</au><au>Baolong Guo</au><au>Zhanlong Yang</au><au>Xiang Fu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Noise Removal via Wavelet Transform and r/K-PSO</atitle><btitle>2008 Fourth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2008-10</date><risdate>2008</risdate><volume>5</volume><spage>544</spage><epage>548</epage><pages>544-548</pages><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><abstract>Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR).</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2008.608</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2008 Fourth International Conference on Natural Computation, 2008, Vol.5, p.544-548 |
issn | 2157-9555 |
language | eng |
recordid | cdi_ieee_primary_4667494 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Environmental factors Filtering Frequency domain analysis Organisms Particle swarm optimization Productivity PSNR Wavelet domain Wavelet transforms Wiener filter |
title | Image Noise Removal via Wavelet Transform and r/K-PSO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Noise%20Removal%20via%20Wavelet%20Transform%20and%20r/K-PSO&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Natural%20Computation&rft.au=Yunyi%20Yan&rft.date=2008-10&rft.volume=5&rft.spage=544&rft.epage=548&rft.pages=544-548&rft.issn=2157-9555&rft.isbn=9780769533049&rft.isbn_list=0769533043&rft_id=info:doi/10.1109/ICNC.2008.608&rft_dat=%3Cieee_6IE%3E4667494%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4667494&rfr_iscdi=true |