Image Noise Removal via Wavelet Transform and r/K-PSO

Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yunyi Yan, Baolong Guo, Zhanlong Yang, Xiang Fu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue
container_start_page 544
container_title
container_volume 5
creator Yunyi Yan
Baolong Guo
Zhanlong Yang
Xiang Fu
description Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR).
doi_str_mv 10.1109/ICNC.2008.608
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4667494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4667494</ieee_id><sourcerecordid>4667494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d7d13635f8adbf9ecc651ed9bff9704b60eb2b9f786b2fd9f6edf3d1338511543</originalsourceid><addsrcrecordid>eNotjMtKw0AUQAe0YK1ZunIzP5D0TuZ5lxJ8BEsrGnBZZjp3JJI0kpSAf6-iq7M55zB2LaAQAnBdV9uqKAFcYcCdsQytA2tQSwkKz9myFNrmqLVesMtfDUEJV16wbJo-AEAKay3gkum69-_Et0M7EX-hfph9x-fW8zc_U0cn3oz-OKVh7Lk_Rj6un_Ln190VWyTfTZT9c8Wa-7umesw3u4e6ut3kLcIpjzYKaaROzseQkA4HowVFDCmhBRUMUCgDJutMKFPEZCgm-dNIp4XQSq7Yzd-2JaL959j2fvzaK2OsQiW_AXJNRqQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Noise Removal via Wavelet Transform and r/K-PSO</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yunyi Yan ; Baolong Guo ; Zhanlong Yang ; Xiang Fu</creator><creatorcontrib>Yunyi Yan ; Baolong Guo ; Zhanlong Yang ; Xiang Fu</creatorcontrib><description>Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR).</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9780769533049</identifier><identifier>ISBN: 0769533043</identifier><identifier>DOI: 10.1109/ICNC.2008.608</identifier><identifier>LCCN: 2008904182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Environmental factors ; Filtering ; Frequency domain analysis ; Organisms ; Particle swarm optimization ; Productivity ; PSNR ; Wavelet domain ; Wavelet transforms ; Wiener filter</subject><ispartof>2008 Fourth International Conference on Natural Computation, 2008, Vol.5, p.544-548</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4667494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4667494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yunyi Yan</creatorcontrib><creatorcontrib>Baolong Guo</creatorcontrib><creatorcontrib>Zhanlong Yang</creatorcontrib><creatorcontrib>Xiang Fu</creatorcontrib><title>Image Noise Removal via Wavelet Transform and r/K-PSO</title><title>2008 Fourth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR).</description><subject>Environmental factors</subject><subject>Filtering</subject><subject>Frequency domain analysis</subject><subject>Organisms</subject><subject>Particle swarm optimization</subject><subject>Productivity</subject><subject>PSNR</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><subject>Wiener filter</subject><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKw0AUQAe0YK1ZunIzP5D0TuZ5lxJ8BEsrGnBZZjp3JJI0kpSAf6-iq7M55zB2LaAQAnBdV9uqKAFcYcCdsQytA2tQSwkKz9myFNrmqLVesMtfDUEJV16wbJo-AEAKay3gkum69-_Et0M7EX-hfph9x-fW8zc_U0cn3oz-OKVh7Lk_Rj6un_Ln190VWyTfTZT9c8Wa-7umesw3u4e6ut3kLcIpjzYKaaROzseQkA4HowVFDCmhBRUMUCgDJutMKFPEZCgm-dNIp4XQSq7Yzd-2JaL959j2fvzaK2OsQiW_AXJNRqQ</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Yunyi Yan</creator><creator>Baolong Guo</creator><creator>Zhanlong Yang</creator><creator>Xiang Fu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Image Noise Removal via Wavelet Transform and r/K-PSO</title><author>Yunyi Yan ; Baolong Guo ; Zhanlong Yang ; Xiang Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d7d13635f8adbf9ecc651ed9bff9704b60eb2b9f786b2fd9f6edf3d1338511543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Environmental factors</topic><topic>Filtering</topic><topic>Frequency domain analysis</topic><topic>Organisms</topic><topic>Particle swarm optimization</topic><topic>Productivity</topic><topic>PSNR</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Yunyi Yan</creatorcontrib><creatorcontrib>Baolong Guo</creatorcontrib><creatorcontrib>Zhanlong Yang</creatorcontrib><creatorcontrib>Xiang Fu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yunyi Yan</au><au>Baolong Guo</au><au>Zhanlong Yang</au><au>Xiang Fu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Noise Removal via Wavelet Transform and r/K-PSO</atitle><btitle>2008 Fourth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2008-10</date><risdate>2008</risdate><volume>5</volume><spage>544</spage><epage>548</epage><pages>544-548</pages><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><abstract>Image noise removal is a classic problem. In this paper, a novel scheme combining r/K-PSO and wavelet transform was introduced to removal image noise. By wavelet transform, image was decomposed into detail subbands and approximation subband. Every detail subband will be shrunk by a special threshold instead of a universe one. A novel optimization algorithm named r/K-PSO was introduced to optimize and determine the thresholds. The main idea of r/K-PSO is inspired by the r- and K-selection of Ecology. r-selection can be characterized as: quantitative, little parent care, large growth rate and rapid development and K-selection as: qualitative, much parent care, small growth rate and slow development. And experimental results also proved that the proposed noise removal scheme optimized by r/K-PSO was superior to 2-D Winner Filtering (WF), universal hard-thresholding (UHT) and universal soft-thresholding (UST) in terms of peak signal-to-noise ratio (PSNR).</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2008.608</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2008 Fourth International Conference on Natural Computation, 2008, Vol.5, p.544-548
issn 2157-9555
language eng
recordid cdi_ieee_primary_4667494
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Environmental factors
Filtering
Frequency domain analysis
Organisms
Particle swarm optimization
Productivity
PSNR
Wavelet domain
Wavelet transforms
Wiener filter
title Image Noise Removal via Wavelet Transform and r/K-PSO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Noise%20Removal%20via%20Wavelet%20Transform%20and%20r/K-PSO&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Natural%20Computation&rft.au=Yunyi%20Yan&rft.date=2008-10&rft.volume=5&rft.spage=544&rft.epage=548&rft.pages=544-548&rft.issn=2157-9555&rft.isbn=9780769533049&rft.isbn_list=0769533043&rft_id=info:doi/10.1109/ICNC.2008.608&rft_dat=%3Cieee_6IE%3E4667494%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4667494&rfr_iscdi=true