Bayesian Neural Networks and Its Application
The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bay...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | |
container_start_page | 446 |
container_title | |
container_volume | 3 |
creator | Chunling Fan Feng Gao Sitong Sun Fengying Cui |
description | The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision. |
doi_str_mv | 10.1109/ICNC.2008.624 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4667178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4667178</ieee_id><sourcerecordid>4667178</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c08d1f04cdfdd3b4611742c49237306581e147a0d893b43b8b641fe9e4207fd53</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC1BJUqbkYklH0DCvX5deywRj0hVWcpcObEjGUIaxUGof08RTGc4R4exG4QSEex9Xe2qkgOYUnN5wTJLBkhbJQRIe8mWHBUVVim1YNe_mQWJhl-xLKV3ABBIRGCX7O7BnUKKbsh34Wty_Rnz93H6SLkbfF7PKd-MYx9bN8fjsGaLzvUpZP9csbenx331Umxfn-tqsy0ikpqLFozHDmTrO-9FIzUiSd5KywUJ0MpgQEkOvLFnKxrTaIldsEFyoM4rsWK3f98YQjiMU_x00-kgtSYkI34A9jJDGw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian Neural Networks and Its Application</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chunling Fan ; Feng Gao ; Sitong Sun ; Fengying Cui</creator><creatorcontrib>Chunling Fan ; Feng Gao ; Sitong Sun ; Fengying Cui</creatorcontrib><description>The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9780769533049</identifier><identifier>ISBN: 0769533043</identifier><identifier>DOI: 10.1109/ICNC.2008.624</identifier><identifier>LCCN: 2008904182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Automation ; Bayesian methods ; Computer networks ; Educational institutions ; Neural networks ; Predictive models ; Probability distribution ; Statistical distributions ; Sun</subject><ispartof>2008 Fourth International Conference on Natural Computation, 2008, Vol.3, p.446-450</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4667178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4667178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Feng Gao</creatorcontrib><creatorcontrib>Sitong Sun</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><title>Bayesian Neural Networks and Its Application</title><title>2008 Fourth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision.</description><subject>Automatic control</subject><subject>Automation</subject><subject>Bayesian methods</subject><subject>Computer networks</subject><subject>Educational institutions</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Probability distribution</subject><subject>Statistical distributions</subject><subject>Sun</subject><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC1BJUqbkYklH0DCvX5deywRj0hVWcpcObEjGUIaxUGof08RTGc4R4exG4QSEex9Xe2qkgOYUnN5wTJLBkhbJQRIe8mWHBUVVim1YNe_mQWJhl-xLKV3ABBIRGCX7O7BnUKKbsh34Wty_Rnz93H6SLkbfF7PKd-MYx9bN8fjsGaLzvUpZP9csbenx331Umxfn-tqsy0ikpqLFozHDmTrO-9FIzUiSd5KywUJ0MpgQEkOvLFnKxrTaIldsEFyoM4rsWK3f98YQjiMU_x00-kgtSYkI34A9jJDGw</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Chunling Fan</creator><creator>Feng Gao</creator><creator>Sitong Sun</creator><creator>Fengying Cui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Bayesian Neural Networks and Its Application</title><author>Chunling Fan ; Feng Gao ; Sitong Sun ; Fengying Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c08d1f04cdfdd3b4611742c49237306581e147a0d893b43b8b641fe9e4207fd53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automatic control</topic><topic>Automation</topic><topic>Bayesian methods</topic><topic>Computer networks</topic><topic>Educational institutions</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Probability distribution</topic><topic>Statistical distributions</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Feng Gao</creatorcontrib><creatorcontrib>Sitong Sun</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunling Fan</au><au>Feng Gao</au><au>Sitong Sun</au><au>Fengying Cui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian Neural Networks and Its Application</atitle><btitle>2008 Fourth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2008-10</date><risdate>2008</risdate><volume>3</volume><spage>446</spage><epage>450</epage><pages>446-450</pages><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><abstract>The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2008.624</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2008 Fourth International Conference on Natural Computation, 2008, Vol.3, p.446-450 |
issn | 2157-9555 |
language | eng |
recordid | cdi_ieee_primary_4667178 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic control Automation Bayesian methods Computer networks Educational institutions Neural networks Predictive models Probability distribution Statistical distributions Sun |
title | Bayesian Neural Networks and Its Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20Neural%20Networks%20and%20Its%20Application&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Natural%20Computation&rft.au=Chunling%20Fan&rft.date=2008-10&rft.volume=3&rft.spage=446&rft.epage=450&rft.pages=446-450&rft.issn=2157-9555&rft.isbn=9780769533049&rft.isbn_list=0769533043&rft_id=info:doi/10.1109/ICNC.2008.624&rft_dat=%3Cieee_6IE%3E4667178%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4667178&rfr_iscdi=true |