Bayesian Neural Networks and Its Application

The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chunling Fan, Feng Gao, Sitong Sun, Fengying Cui
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue
container_start_page 446
container_title
container_volume 3
creator Chunling Fan
Feng Gao
Sitong Sun
Fengying Cui
description The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision.
doi_str_mv 10.1109/ICNC.2008.624
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4667178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4667178</ieee_id><sourcerecordid>4667178</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c08d1f04cdfdd3b4611742c49237306581e147a0d893b43b8b641fe9e4207fd53</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC1BJUqbkYklH0DCvX5deywRj0hVWcpcObEjGUIaxUGof08RTGc4R4exG4QSEex9Xe2qkgOYUnN5wTJLBkhbJQRIe8mWHBUVVim1YNe_mQWJhl-xLKV3ABBIRGCX7O7BnUKKbsh34Wty_Rnz93H6SLkbfF7PKd-MYx9bN8fjsGaLzvUpZP9csbenx331Umxfn-tqsy0ikpqLFozHDmTrO-9FIzUiSd5KywUJ0MpgQEkOvLFnKxrTaIldsEFyoM4rsWK3f98YQjiMU_x00-kgtSYkI34A9jJDGw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian Neural Networks and Its Application</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chunling Fan ; Feng Gao ; Sitong Sun ; Fengying Cui</creator><creatorcontrib>Chunling Fan ; Feng Gao ; Sitong Sun ; Fengying Cui</creatorcontrib><description>The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9780769533049</identifier><identifier>ISBN: 0769533043</identifier><identifier>DOI: 10.1109/ICNC.2008.624</identifier><identifier>LCCN: 2008904182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Automation ; Bayesian methods ; Computer networks ; Educational institutions ; Neural networks ; Predictive models ; Probability distribution ; Statistical distributions ; Sun</subject><ispartof>2008 Fourth International Conference on Natural Computation, 2008, Vol.3, p.446-450</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4667178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4667178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Feng Gao</creatorcontrib><creatorcontrib>Sitong Sun</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><title>Bayesian Neural Networks and Its Application</title><title>2008 Fourth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision.</description><subject>Automatic control</subject><subject>Automation</subject><subject>Bayesian methods</subject><subject>Computer networks</subject><subject>Educational institutions</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Probability distribution</subject><subject>Statistical distributions</subject><subject>Sun</subject><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC1BJUqbkYklH0DCvX5deywRj0hVWcpcObEjGUIaxUGof08RTGc4R4exG4QSEex9Xe2qkgOYUnN5wTJLBkhbJQRIe8mWHBUVVim1YNe_mQWJhl-xLKV3ABBIRGCX7O7BnUKKbsh34Wty_Rnz93H6SLkbfF7PKd-MYx9bN8fjsGaLzvUpZP9csbenx331Umxfn-tqsy0ikpqLFozHDmTrO-9FIzUiSd5KywUJ0MpgQEkOvLFnKxrTaIldsEFyoM4rsWK3f98YQjiMU_x00-kgtSYkI34A9jJDGw</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Chunling Fan</creator><creator>Feng Gao</creator><creator>Sitong Sun</creator><creator>Fengying Cui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Bayesian Neural Networks and Its Application</title><author>Chunling Fan ; Feng Gao ; Sitong Sun ; Fengying Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c08d1f04cdfdd3b4611742c49237306581e147a0d893b43b8b641fe9e4207fd53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automatic control</topic><topic>Automation</topic><topic>Bayesian methods</topic><topic>Computer networks</topic><topic>Educational institutions</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Probability distribution</topic><topic>Statistical distributions</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Feng Gao</creatorcontrib><creatorcontrib>Sitong Sun</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunling Fan</au><au>Feng Gao</au><au>Sitong Sun</au><au>Fengying Cui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian Neural Networks and Its Application</atitle><btitle>2008 Fourth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2008-10</date><risdate>2008</risdate><volume>3</volume><spage>446</spage><epage>450</epage><pages>446-450</pages><issn>2157-9555</issn><isbn>9780769533049</isbn><isbn>0769533043</isbn><abstract>The Bayesian approach provides consistent way to do inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty of controlling the modelpsilas complexity in modelling building of standard neural network. And the Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks. And then the structure of Bayesian neural networks is designed in this paper, and real detected drift data of a DTG is used to prove the effectiveness of the method. The results show the Bayesian neural networks methods possess better predictive precision.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2008.624</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2008 Fourth International Conference on Natural Computation, 2008, Vol.3, p.446-450
issn 2157-9555
language eng
recordid cdi_ieee_primary_4667178
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Automation
Bayesian methods
Computer networks
Educational institutions
Neural networks
Predictive models
Probability distribution
Statistical distributions
Sun
title Bayesian Neural Networks and Its Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20Neural%20Networks%20and%20Its%20Application&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Natural%20Computation&rft.au=Chunling%20Fan&rft.date=2008-10&rft.volume=3&rft.spage=446&rft.epage=450&rft.pages=446-450&rft.issn=2157-9555&rft.isbn=9780769533049&rft.isbn_list=0769533043&rft_id=info:doi/10.1109/ICNC.2008.624&rft_dat=%3Cieee_6IE%3E4667178%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4667178&rfr_iscdi=true