Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster
Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, suc...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | |
container_start_page | 147 |
container_title | |
container_volume | 3 |
creator | Xiuhua Tang Xingbo Sun |
description | Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features. |
doi_str_mv | 10.1109/FSKD.2008.221 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4666230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4666230</ieee_id><sourcerecordid>4666230</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92095d32965dd8e302d4f4b302be6ae1ccc795d510b40245da90c70d78a25b093</originalsourceid><addsrcrecordid>eNotjL1OwzAYRS2hSkDJyMTiF0j4_B-PKFCKKGKAqmPlxE5i1CaVnQzt02MJ7nKudI8uQvcECkJAP66-3p8LClAWlJIrlGlVgpJaMAZCLtBtmpSmCqS8RlmMP5DCNNdc3aBd1fvBRYd3Cbg6mBh96xsz-XHAUx_Guevxh2_C2AVz6vE2-qHD1Xisk2_xyplpDg6bIfX5cjmnizlOLtyhRWsO0WX_XKLt6uW7Wuebz9e36mmTe6LElGsKWlhGtRTWlo4BtbzldWLtpHGkaRqVBEGg5kC5sEZDo8Cq0lBRg2ZL9PD3651z-1PwRxPOey6lpAzYL_jOUZs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiuhua Tang ; Xingbo Sun</creator><creatorcontrib>Xiuhua Tang ; Xingbo Sun</creatorcontrib><description>Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features.</description><identifier>ISBN: 9780769533056</identifier><identifier>ISBN: 0769533051</identifier><identifier>DOI: 10.1109/FSKD.2008.221</identifier><identifier>LCCN: 2007927066</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical engineering ; Chinese Wine ; classiffication ; Data mining ; Energy resolution ; Feature extraction ; fuzzy cluster ; Fuzzy systems ; Gabor filters ; Knowledge engineering ; Microstructure ; mirograph ; Shape ; Sun</subject><ispartof>2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008, Vol.3, p.147-152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4666230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4666230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiuhua Tang</creatorcontrib><creatorcontrib>Xingbo Sun</creatorcontrib><title>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</title><title>2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features.</description><subject>Chemical engineering</subject><subject>Chinese Wine</subject><subject>classiffication</subject><subject>Data mining</subject><subject>Energy resolution</subject><subject>Feature extraction</subject><subject>fuzzy cluster</subject><subject>Fuzzy systems</subject><subject>Gabor filters</subject><subject>Knowledge engineering</subject><subject>Microstructure</subject><subject>mirograph</subject><subject>Shape</subject><subject>Sun</subject><isbn>9780769533056</isbn><isbn>0769533051</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjL1OwzAYRS2hSkDJyMTiF0j4_B-PKFCKKGKAqmPlxE5i1CaVnQzt02MJ7nKudI8uQvcECkJAP66-3p8LClAWlJIrlGlVgpJaMAZCLtBtmpSmCqS8RlmMP5DCNNdc3aBd1fvBRYd3Cbg6mBh96xsz-XHAUx_Guevxh2_C2AVz6vE2-qHD1Xisk2_xyplpDg6bIfX5cjmnizlOLtyhRWsO0WX_XKLt6uW7Wuebz9e36mmTe6LElGsKWlhGtRTWlo4BtbzldWLtpHGkaRqVBEGg5kC5sEZDo8Cq0lBRg2ZL9PD3651z-1PwRxPOey6lpAzYL_jOUZs</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Xiuhua Tang</creator><creator>Xingbo Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</title><author>Xiuhua Tang ; Xingbo Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92095d32965dd8e302d4f4b302be6ae1ccc795d510b40245da90c70d78a25b093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemical engineering</topic><topic>Chinese Wine</topic><topic>classiffication</topic><topic>Data mining</topic><topic>Energy resolution</topic><topic>Feature extraction</topic><topic>fuzzy cluster</topic><topic>Fuzzy systems</topic><topic>Gabor filters</topic><topic>Knowledge engineering</topic><topic>Microstructure</topic><topic>mirograph</topic><topic>Shape</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiuhua Tang</creatorcontrib><creatorcontrib>Xingbo Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiuhua Tang</au><au>Xingbo Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</atitle><btitle>2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2008-10</date><risdate>2008</risdate><volume>3</volume><spage>147</spage><epage>152</epage><pages>147-152</pages><isbn>9780769533056</isbn><isbn>0769533051</isbn><abstract>Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2008.221</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769533056 |
ispartof | 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008, Vol.3, p.147-152 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4666230 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chemical engineering Chinese Wine classiffication Data mining Energy resolution Feature extraction fuzzy cluster Fuzzy systems Gabor filters Knowledge engineering Microstructure mirograph Shape Sun |
title | Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chinese%20Wine%20Classification%20through%20Micrograph%20Using%20Combined%20Feature%20and%20Fuzzy%20Cluster&rft.btitle=2008%20Fifth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Xiuhua%20Tang&rft.date=2008-10&rft.volume=3&rft.spage=147&rft.epage=152&rft.pages=147-152&rft.isbn=9780769533056&rft.isbn_list=0769533051&rft_id=info:doi/10.1109/FSKD.2008.221&rft_dat=%3Cieee_6IE%3E4666230%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4666230&rfr_iscdi=true |