Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster

Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiuhua Tang, Xingbo Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 147
container_title
container_volume 3
creator Xiuhua Tang
Xingbo Sun
description Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features.
doi_str_mv 10.1109/FSKD.2008.221
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4666230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4666230</ieee_id><sourcerecordid>4666230</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92095d32965dd8e302d4f4b302be6ae1ccc795d510b40245da90c70d78a25b093</originalsourceid><addsrcrecordid>eNotjL1OwzAYRS2hSkDJyMTiF0j4_B-PKFCKKGKAqmPlxE5i1CaVnQzt02MJ7nKudI8uQvcECkJAP66-3p8LClAWlJIrlGlVgpJaMAZCLtBtmpSmCqS8RlmMP5DCNNdc3aBd1fvBRYd3Cbg6mBh96xsz-XHAUx_Guevxh2_C2AVz6vE2-qHD1Xisk2_xyplpDg6bIfX5cjmnizlOLtyhRWsO0WX_XKLt6uW7Wuebz9e36mmTe6LElGsKWlhGtRTWlo4BtbzldWLtpHGkaRqVBEGg5kC5sEZDo8Cq0lBRg2ZL9PD3651z-1PwRxPOey6lpAzYL_jOUZs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiuhua Tang ; Xingbo Sun</creator><creatorcontrib>Xiuhua Tang ; Xingbo Sun</creatorcontrib><description>Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features.</description><identifier>ISBN: 9780769533056</identifier><identifier>ISBN: 0769533051</identifier><identifier>DOI: 10.1109/FSKD.2008.221</identifier><identifier>LCCN: 2007927066</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical engineering ; Chinese Wine ; classiffication ; Data mining ; Energy resolution ; Feature extraction ; fuzzy cluster ; Fuzzy systems ; Gabor filters ; Knowledge engineering ; Microstructure ; mirograph ; Shape ; Sun</subject><ispartof>2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008, Vol.3, p.147-152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4666230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4666230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiuhua Tang</creatorcontrib><creatorcontrib>Xingbo Sun</creatorcontrib><title>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</title><title>2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features.</description><subject>Chemical engineering</subject><subject>Chinese Wine</subject><subject>classiffication</subject><subject>Data mining</subject><subject>Energy resolution</subject><subject>Feature extraction</subject><subject>fuzzy cluster</subject><subject>Fuzzy systems</subject><subject>Gabor filters</subject><subject>Knowledge engineering</subject><subject>Microstructure</subject><subject>mirograph</subject><subject>Shape</subject><subject>Sun</subject><isbn>9780769533056</isbn><isbn>0769533051</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjL1OwzAYRS2hSkDJyMTiF0j4_B-PKFCKKGKAqmPlxE5i1CaVnQzt02MJ7nKudI8uQvcECkJAP66-3p8LClAWlJIrlGlVgpJaMAZCLtBtmpSmCqS8RlmMP5DCNNdc3aBd1fvBRYd3Cbg6mBh96xsz-XHAUx_Guevxh2_C2AVz6vE2-qHD1Xisk2_xyplpDg6bIfX5cjmnizlOLtyhRWsO0WX_XKLt6uW7Wuebz9e36mmTe6LElGsKWlhGtRTWlo4BtbzldWLtpHGkaRqVBEGg5kC5sEZDo8Cq0lBRg2ZL9PD3651z-1PwRxPOey6lpAzYL_jOUZs</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Xiuhua Tang</creator><creator>Xingbo Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</title><author>Xiuhua Tang ; Xingbo Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92095d32965dd8e302d4f4b302be6ae1ccc795d510b40245da90c70d78a25b093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemical engineering</topic><topic>Chinese Wine</topic><topic>classiffication</topic><topic>Data mining</topic><topic>Energy resolution</topic><topic>Feature extraction</topic><topic>fuzzy cluster</topic><topic>Fuzzy systems</topic><topic>Gabor filters</topic><topic>Knowledge engineering</topic><topic>Microstructure</topic><topic>mirograph</topic><topic>Shape</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiuhua Tang</creatorcontrib><creatorcontrib>Xingbo Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiuhua Tang</au><au>Xingbo Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster</atitle><btitle>2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2008-10</date><risdate>2008</risdate><volume>3</volume><spage>147</spage><epage>152</epage><pages>147-152</pages><isbn>9780769533056</isbn><isbn>0769533051</isbn><abstract>Micrographs of Chinese wines show floccule, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. In this work, ten Chinese wines are determined or classified in the system, such as Wuliangye, Luzhoulaojiao, Xushui, Jiannanchun, Maotai and et.al. For each wine, we collect micrographs of deferent resolution (300 nm times 300 nm, 1.5 mum times 1.5 mum and 5 mum times 5 mum). We compute the two sets of features: statistical measure (energy, mean and variance) of images filtered by multi-scale and multi-orientation Gabor filters, and moment invariants in the steerable pyramid transform representation. The means of vectors generated from same resolution micrographs obtained from each wine are employed as the corresponding cluster center. We adopt the semi-unsupervised classification method improved FCM in which the cluster centers are given. We compare the recognition results for different choices of features.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2008.221</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769533056
ispartof 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008, Vol.3, p.147-152
issn
language eng
recordid cdi_ieee_primary_4666230
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chemical engineering
Chinese Wine
classiffication
Data mining
Energy resolution
Feature extraction
fuzzy cluster
Fuzzy systems
Gabor filters
Knowledge engineering
Microstructure
mirograph
Shape
Sun
title Chinese Wine Classification through Micrograph Using Combined Feature and Fuzzy Cluster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chinese%20Wine%20Classification%20through%20Micrograph%20Using%20Combined%20Feature%20and%20Fuzzy%20Cluster&rft.btitle=2008%20Fifth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Xiuhua%20Tang&rft.date=2008-10&rft.volume=3&rft.spage=147&rft.epage=152&rft.pages=147-152&rft.isbn=9780769533056&rft.isbn_list=0769533051&rft_id=info:doi/10.1109/FSKD.2008.221&rft_dat=%3Cieee_6IE%3E4666230%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4666230&rfr_iscdi=true