Storage structures for efficient query processing in a stock recommendation system

Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: You-Min Ha, Sang-Wook Kim, Sanghyun Park, Seung-Hwan Lim
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue
container_start_page 275
container_title
container_volume
creator You-Min Ha
Sang-Wook Kim
Sanghyun Park
Seung-Hwan Lim
description Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude.
doi_str_mv 10.1109/ICADIWT.2008.4664358
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4664358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4664358</ieee_id><sourcerecordid>4664358</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4160f46f97261147ca5f9522c68bbef28fb15136175486ea9ca69a40a0e7850e3</originalsourceid><addsrcrecordid>eNo1kMFKAzEYhCNS0NZ9Aj3kBXZNsn-yyVGq1kJB0ILHko1_StTdrUn20Ld3xTqXYeBjGIaQG84qzpm5XS_v7tdv20owpitQCmqpz0hhGs1BAAglwJyT-X-o5YzMf1nDQDf6ghQpfbBJIGsl1SV5ec1DtHukKcfR5TFion6IFL0PLmCf6feI8UgPcXCYUuj3NPTUTvjgPmlEN3Qd9u82h6Gn6Zgydldk5u1XwuLkC7J9fNgun8rN82qavymDYbkErpgH5U0jFOfQOCu9kUI4pdsWvdC-5ZLXijcStEJrnFXGArMMGy0Z1gty_VcbEHF3iKGz8bg7XVL_AOS2VCg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Storage structures for efficient query processing in a stock recommendation system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>You-Min Ha ; Sang-Wook Kim ; Sanghyun Park ; Seung-Hwan Lim</creator><creatorcontrib>You-Min Ha ; Sang-Wook Kim ; Sanghyun Park ; Seung-Hwan Lim</creatorcontrib><description>Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude.</description><identifier>ISBN: 1424426235</identifier><identifier>ISBN: 9781424426232</identifier><identifier>EISBN: 9781424426249</identifier><identifier>EISBN: 1424426243</identifier><identifier>DOI: 10.1109/ICADIWT.2008.4664358</identifier><identifier>LCCN: 2008904878</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), 2008, p.275-280</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4664358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4664358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You-Min Ha</creatorcontrib><creatorcontrib>Sang-Wook Kim</creatorcontrib><creatorcontrib>Sanghyun Park</creatorcontrib><creatorcontrib>Seung-Hwan Lim</creatorcontrib><title>Storage structures for efficient query processing in a stock recommendation system</title><title>2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)</title><addtitle>ICADIWT</addtitle><description>Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude.</description><isbn>1424426235</isbn><isbn>9781424426232</isbn><isbn>9781424426249</isbn><isbn>1424426243</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMFKAzEYhCNS0NZ9Aj3kBXZNsn-yyVGq1kJB0ILHko1_StTdrUn20Ld3xTqXYeBjGIaQG84qzpm5XS_v7tdv20owpitQCmqpz0hhGs1BAAglwJyT-X-o5YzMf1nDQDf6ghQpfbBJIGsl1SV5ec1DtHukKcfR5TFion6IFL0PLmCf6feI8UgPcXCYUuj3NPTUTvjgPmlEN3Qd9u82h6Gn6Zgydldk5u1XwuLkC7J9fNgun8rN82qavymDYbkErpgH5U0jFOfQOCu9kUI4pdsWvdC-5ZLXijcStEJrnFXGArMMGy0Z1gty_VcbEHF3iKGz8bg7XVL_AOS2VCg</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>You-Min Ha</creator><creator>Sang-Wook Kim</creator><creator>Sanghyun Park</creator><creator>Seung-Hwan Lim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Storage structures for efficient query processing in a stock recommendation system</title><author>You-Min Ha ; Sang-Wook Kim ; Sanghyun Park ; Seung-Hwan Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4160f46f97261147ca5f9522c68bbef28fb15136175486ea9ca69a40a0e7850e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>You-Min Ha</creatorcontrib><creatorcontrib>Sang-Wook Kim</creatorcontrib><creatorcontrib>Sanghyun Park</creatorcontrib><creatorcontrib>Seung-Hwan Lim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You-Min Ha</au><au>Sang-Wook Kim</au><au>Sanghyun Park</au><au>Seung-Hwan Lim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Storage structures for efficient query processing in a stock recommendation system</atitle><btitle>2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)</btitle><stitle>ICADIWT</stitle><date>2008-08</date><risdate>2008</risdate><spage>275</spage><epage>280</epage><pages>275-280</pages><isbn>1424426235</isbn><isbn>9781424426232</isbn><eisbn>9781424426249</eisbn><eisbn>1424426243</eisbn><abstract>Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude.</abstract><pub>IEEE</pub><doi>10.1109/ICADIWT.2008.4664358</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424426235
ispartof 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), 2008, p.275-280
issn
language eng
recordid cdi_ieee_primary_4664358
source IEEE Electronic Library (IEL) Conference Proceedings
title Storage structures for efficient query processing in a stock recommendation system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Storage%20structures%20for%20efficient%20query%20processing%20in%20a%20stock%20recommendation%20system&rft.btitle=2008%20First%20International%20Conference%20on%20the%20Applications%20of%20Digital%20Information%20and%20Web%20Technologies%20(ICADIWT)&rft.au=You-Min%20Ha&rft.date=2008-08&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.isbn=1424426235&rft.isbn_list=9781424426232&rft_id=info:doi/10.1109/ICADIWT.2008.4664358&rft_dat=%3Cieee_6IE%3E4664358%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424426249&rft.eisbn_list=1424426243&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4664358&rfr_iscdi=true