Storage structures for efficient query processing in a stock recommendation system
Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that r...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | |
container_start_page | 275 |
container_title | |
container_volume | |
creator | You-Min Ha Sang-Wook Kim Sanghyun Park Seung-Hwan Lim |
description | Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude. |
doi_str_mv | 10.1109/ICADIWT.2008.4664358 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4664358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4664358</ieee_id><sourcerecordid>4664358</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4160f46f97261147ca5f9522c68bbef28fb15136175486ea9ca69a40a0e7850e3</originalsourceid><addsrcrecordid>eNo1kMFKAzEYhCNS0NZ9Aj3kBXZNsn-yyVGq1kJB0ILHko1_StTdrUn20Ld3xTqXYeBjGIaQG84qzpm5XS_v7tdv20owpitQCmqpz0hhGs1BAAglwJyT-X-o5YzMf1nDQDf6ghQpfbBJIGsl1SV5ec1DtHukKcfR5TFion6IFL0PLmCf6feI8UgPcXCYUuj3NPTUTvjgPmlEN3Qd9u82h6Gn6Zgydldk5u1XwuLkC7J9fNgun8rN82qavymDYbkErpgH5U0jFOfQOCu9kUI4pdsWvdC-5ZLXijcStEJrnFXGArMMGy0Z1gty_VcbEHF3iKGz8bg7XVL_AOS2VCg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Storage structures for efficient query processing in a stock recommendation system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>You-Min Ha ; Sang-Wook Kim ; Sanghyun Park ; Seung-Hwan Lim</creator><creatorcontrib>You-Min Ha ; Sang-Wook Kim ; Sanghyun Park ; Seung-Hwan Lim</creatorcontrib><description>Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude.</description><identifier>ISBN: 1424426235</identifier><identifier>ISBN: 9781424426232</identifier><identifier>EISBN: 9781424426249</identifier><identifier>EISBN: 1424426243</identifier><identifier>DOI: 10.1109/ICADIWT.2008.4664358</identifier><identifier>LCCN: 2008904878</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), 2008, p.275-280</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4664358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4664358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You-Min Ha</creatorcontrib><creatorcontrib>Sang-Wook Kim</creatorcontrib><creatorcontrib>Sanghyun Park</creatorcontrib><creatorcontrib>Seung-Hwan Lim</creatorcontrib><title>Storage structures for efficient query processing in a stock recommendation system</title><title>2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)</title><addtitle>ICADIWT</addtitle><description>Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude.</description><isbn>1424426235</isbn><isbn>9781424426232</isbn><isbn>9781424426249</isbn><isbn>1424426243</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMFKAzEYhCNS0NZ9Aj3kBXZNsn-yyVGq1kJB0ILHko1_StTdrUn20Ld3xTqXYeBjGIaQG84qzpm5XS_v7tdv20owpitQCmqpz0hhGs1BAAglwJyT-X-o5YzMf1nDQDf6ghQpfbBJIGsl1SV5ec1DtHukKcfR5TFion6IFL0PLmCf6feI8UgPcXCYUuj3NPTUTvjgPmlEN3Qd9u82h6Gn6Zgydldk5u1XwuLkC7J9fNgun8rN82qavymDYbkErpgH5U0jFOfQOCu9kUI4pdsWvdC-5ZLXijcStEJrnFXGArMMGy0Z1gty_VcbEHF3iKGz8bg7XVL_AOS2VCg</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>You-Min Ha</creator><creator>Sang-Wook Kim</creator><creator>Sanghyun Park</creator><creator>Seung-Hwan Lim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Storage structures for efficient query processing in a stock recommendation system</title><author>You-Min Ha ; Sang-Wook Kim ; Sanghyun Park ; Seung-Hwan Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4160f46f97261147ca5f9522c68bbef28fb15136175486ea9ca69a40a0e7850e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>You-Min Ha</creatorcontrib><creatorcontrib>Sang-Wook Kim</creatorcontrib><creatorcontrib>Sanghyun Park</creatorcontrib><creatorcontrib>Seung-Hwan Lim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You-Min Ha</au><au>Sang-Wook Kim</au><au>Sanghyun Park</au><au>Seung-Hwan Lim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Storage structures for efficient query processing in a stock recommendation system</atitle><btitle>2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)</btitle><stitle>ICADIWT</stitle><date>2008-08</date><risdate>2008</risdate><spage>275</spage><epage>280</epage><pages>275-280</pages><isbn>1424426235</isbn><isbn>9781424426232</isbn><eisbn>9781424426249</eisbn><eisbn>1424426243</eisbn><abstract>Rule discovery is an operation that uncovers useful rules from a given database. By using the rule discovery process in a stock database, we can recommend buying and selling points to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investment types. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure performs best in query processing and improves the performance of other ones in orders of magnitude.</abstract><pub>IEEE</pub><doi>10.1109/ICADIWT.2008.4664358</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424426235 |
ispartof | 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), 2008, p.275-280 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4664358 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
title | Storage structures for efficient query processing in a stock recommendation system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Storage%20structures%20for%20efficient%20query%20processing%20in%20a%20stock%20recommendation%20system&rft.btitle=2008%20First%20International%20Conference%20on%20the%20Applications%20of%20Digital%20Information%20and%20Web%20Technologies%20(ICADIWT)&rft.au=You-Min%20Ha&rft.date=2008-08&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.isbn=1424426235&rft.isbn_list=9781424426232&rft_id=info:doi/10.1109/ICADIWT.2008.4664358&rft_dat=%3Cieee_6IE%3E4664358%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424426249&rft.eisbn_list=1424426243&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4664358&rfr_iscdi=true |