Variable-grain and dynamic work generation for Minimal Unique Itemset mining

SUDA2 is a recursive search algorithm for minimal unique itemset detection. Such sets of items are formed via combinations of non-obvious attributes enabling individual record identification. The nature of SUDA2 allows work to be divided into non-overlapping tasks enabling parallel execution. Earlie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yiapanis, P., Haglin, D.J., Manning, A.M., Mayes, K., Keane, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue
container_start_page 33
container_title
container_volume
creator Yiapanis, P.
Haglin, D.J.
Manning, A.M.
Mayes, K.
Keane, J.
description SUDA2 is a recursive search algorithm for minimal unique itemset detection. Such sets of items are formed via combinations of non-obvious attributes enabling individual record identification. The nature of SUDA2 allows work to be divided into non-overlapping tasks enabling parallel execution. Earlier work developed a parallel implementation for SUDA2 on an SMP cluster, and this was found to be several orders of magnitude faster than sequential SUDA2. However, if fixed-granularity parallel tasks are scheduled naively in the order of their generation, the system load tends to be imbalanced with little work at the beginning and end of the search. This paper investigates the effectiveness of variable-grained and dynamic work generation strategies for parallel SUDA2. These methods restrict the number of sub-tasks to be generated, based on the criterion of probable work size. The further we descend in the search recursion tree, the smaller the tasks become, thus we only select the largest tasks at each level of recursion as being suitable for scheduling. The revised algorithm runs approximately twice as fast as the existing parallel SUDA2 for finer levels of granularity when variable-grained work generation is applied. The dynamic method, performing level-wise task selection based on size, outperforms the other techniques investigated.
doi_str_mv 10.1109/CLUSTR.2008.4663753
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4663753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663753</ieee_id><sourcerecordid>4663753</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-efa7e4af33065aaf68edb5d1dc0b504f0c10fdd2baa13b8ca821e7901813f3a33</originalsourceid><addsrcrecordid>eNotkFtLAzEUhOMNrLW_oC_5A1tzctlNHqV4KawI2vpazm5OSrSbanZF_Pcu2HkZ-AaGYRibg1gACHezrDev65eFFMIudFmqyqgTNnOVBS21lqUW7pRNJJS2cNKoM3Z1DJSDczYBY2RhRnDJZn3_LkZpo4wTE1a_YY7Y7KnYZYyJY_Lc_ybsYst_DvmD7yhRxiEeEg-HzJ9iih3u-SbFr2_iq4G6ngbejTjtrtlFwH1Ps6NP2eb-br18LOrnh9Xyti4iVGYoKGBFGoNSojSIobTkG-PBt6IxQgfRggjeywYRVGNbtBKocgIsqKBQqSmb__dGItp-5nFR_t0ej1F_hj5UIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Variable-grain and dynamic work generation for Minimal Unique Itemset mining</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yiapanis, P. ; Haglin, D.J. ; Manning, A.M. ; Mayes, K. ; Keane, J.</creator><creatorcontrib>Yiapanis, P. ; Haglin, D.J. ; Manning, A.M. ; Mayes, K. ; Keane, J.</creatorcontrib><description>SUDA2 is a recursive search algorithm for minimal unique itemset detection. Such sets of items are formed via combinations of non-obvious attributes enabling individual record identification. The nature of SUDA2 allows work to be divided into non-overlapping tasks enabling parallel execution. Earlier work developed a parallel implementation for SUDA2 on an SMP cluster, and this was found to be several orders of magnitude faster than sequential SUDA2. However, if fixed-granularity parallel tasks are scheduled naively in the order of their generation, the system load tends to be imbalanced with little work at the beginning and end of the search. This paper investigates the effectiveness of variable-grained and dynamic work generation strategies for parallel SUDA2. These methods restrict the number of sub-tasks to be generated, based on the criterion of probable work size. The further we descend in the search recursion tree, the smaller the tasks become, thus we only select the largest tasks at each level of recursion as being suitable for scheduling. The revised algorithm runs approximately twice as fast as the existing parallel SUDA2 for finer levels of granularity when variable-grained work generation is applied. The dynamic method, performing level-wise task selection based on size, outperforms the other techniques investigated.</description><identifier>ISSN: 1552-5244</identifier><identifier>ISBN: 1424426391</identifier><identifier>ISBN: 9781424426393</identifier><identifier>EISSN: 2168-9253</identifier><identifier>EISBN: 9781424426409</identifier><identifier>EISBN: 1424426405</identifier><identifier>DOI: 10.1109/CLUSTR.2008.4663753</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Correlation ; Gain ; Itemsets ; Load modeling ; Particle separators ; Program processors</subject><ispartof>2008 IEEE International Conference on Cluster Computing, 2008, p.33-41</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yiapanis, P.</creatorcontrib><creatorcontrib>Haglin, D.J.</creatorcontrib><creatorcontrib>Manning, A.M.</creatorcontrib><creatorcontrib>Mayes, K.</creatorcontrib><creatorcontrib>Keane, J.</creatorcontrib><title>Variable-grain and dynamic work generation for Minimal Unique Itemset mining</title><title>2008 IEEE International Conference on Cluster Computing</title><addtitle>CLUSTR</addtitle><description>SUDA2 is a recursive search algorithm for minimal unique itemset detection. Such sets of items are formed via combinations of non-obvious attributes enabling individual record identification. The nature of SUDA2 allows work to be divided into non-overlapping tasks enabling parallel execution. Earlier work developed a parallel implementation for SUDA2 on an SMP cluster, and this was found to be several orders of magnitude faster than sequential SUDA2. However, if fixed-granularity parallel tasks are scheduled naively in the order of their generation, the system load tends to be imbalanced with little work at the beginning and end of the search. This paper investigates the effectiveness of variable-grained and dynamic work generation strategies for parallel SUDA2. These methods restrict the number of sub-tasks to be generated, based on the criterion of probable work size. The further we descend in the search recursion tree, the smaller the tasks become, thus we only select the largest tasks at each level of recursion as being suitable for scheduling. The revised algorithm runs approximately twice as fast as the existing parallel SUDA2 for finer levels of granularity when variable-grained work generation is applied. The dynamic method, performing level-wise task selection based on size, outperforms the other techniques investigated.</description><subject>Computer science</subject><subject>Correlation</subject><subject>Gain</subject><subject>Itemsets</subject><subject>Load modeling</subject><subject>Particle separators</subject><subject>Program processors</subject><issn>1552-5244</issn><issn>2168-9253</issn><isbn>1424426391</isbn><isbn>9781424426393</isbn><isbn>9781424426409</isbn><isbn>1424426405</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkFtLAzEUhOMNrLW_oC_5A1tzctlNHqV4KawI2vpazm5OSrSbanZF_Pcu2HkZ-AaGYRibg1gACHezrDev65eFFMIudFmqyqgTNnOVBS21lqUW7pRNJJS2cNKoM3Z1DJSDczYBY2RhRnDJZn3_LkZpo4wTE1a_YY7Y7KnYZYyJY_Lc_ybsYst_DvmD7yhRxiEeEg-HzJ9iih3u-SbFr2_iq4G6ngbejTjtrtlFwH1Ps6NP2eb-br18LOrnh9Xyti4iVGYoKGBFGoNSojSIobTkG-PBt6IxQgfRggjeywYRVGNbtBKocgIsqKBQqSmb__dGItp-5nFR_t0ej1F_hj5UIQ</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Yiapanis, P.</creator><creator>Haglin, D.J.</creator><creator>Manning, A.M.</creator><creator>Mayes, K.</creator><creator>Keane, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Variable-grain and dynamic work generation for Minimal Unique Itemset mining</title><author>Yiapanis, P. ; Haglin, D.J. ; Manning, A.M. ; Mayes, K. ; Keane, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-efa7e4af33065aaf68edb5d1dc0b504f0c10fdd2baa13b8ca821e7901813f3a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer science</topic><topic>Correlation</topic><topic>Gain</topic><topic>Itemsets</topic><topic>Load modeling</topic><topic>Particle separators</topic><topic>Program processors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yiapanis, P.</creatorcontrib><creatorcontrib>Haglin, D.J.</creatorcontrib><creatorcontrib>Manning, A.M.</creatorcontrib><creatorcontrib>Mayes, K.</creatorcontrib><creatorcontrib>Keane, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yiapanis, P.</au><au>Haglin, D.J.</au><au>Manning, A.M.</au><au>Mayes, K.</au><au>Keane, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Variable-grain and dynamic work generation for Minimal Unique Itemset mining</atitle><btitle>2008 IEEE International Conference on Cluster Computing</btitle><stitle>CLUSTR</stitle><date>2008-09</date><risdate>2008</risdate><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>1552-5244</issn><eissn>2168-9253</eissn><isbn>1424426391</isbn><isbn>9781424426393</isbn><eisbn>9781424426409</eisbn><eisbn>1424426405</eisbn><abstract>SUDA2 is a recursive search algorithm for minimal unique itemset detection. Such sets of items are formed via combinations of non-obvious attributes enabling individual record identification. The nature of SUDA2 allows work to be divided into non-overlapping tasks enabling parallel execution. Earlier work developed a parallel implementation for SUDA2 on an SMP cluster, and this was found to be several orders of magnitude faster than sequential SUDA2. However, if fixed-granularity parallel tasks are scheduled naively in the order of their generation, the system load tends to be imbalanced with little work at the beginning and end of the search. This paper investigates the effectiveness of variable-grained and dynamic work generation strategies for parallel SUDA2. These methods restrict the number of sub-tasks to be generated, based on the criterion of probable work size. The further we descend in the search recursion tree, the smaller the tasks become, thus we only select the largest tasks at each level of recursion as being suitable for scheduling. The revised algorithm runs approximately twice as fast as the existing parallel SUDA2 for finer levels of granularity when variable-grained work generation is applied. The dynamic method, performing level-wise task selection based on size, outperforms the other techniques investigated.</abstract><pub>IEEE</pub><doi>10.1109/CLUSTR.2008.4663753</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-5244
ispartof 2008 IEEE International Conference on Cluster Computing, 2008, p.33-41
issn 1552-5244
2168-9253
language eng
recordid cdi_ieee_primary_4663753
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Correlation
Gain
Itemsets
Load modeling
Particle separators
Program processors
title Variable-grain and dynamic work generation for Minimal Unique Itemset mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Variable-grain%20and%20dynamic%20work%20generation%20for%20Minimal%20Unique%20Itemset%20mining&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Cluster%20Computing&rft.au=Yiapanis,%20P.&rft.date=2008-09&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=1552-5244&rft.eissn=2168-9253&rft.isbn=1424426391&rft.isbn_list=9781424426393&rft_id=info:doi/10.1109/CLUSTR.2008.4663753&rft_dat=%3Cieee_6IE%3E4663753%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424426409&rft.eisbn_list=1424426405&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4663753&rfr_iscdi=true