Experimental Investigation of 193-nm Laser Breakdown in Air
We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2008-10, Vol.36 (5), p.2512-2521 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2521 |
---|---|
container_issue | 5 |
container_start_page | 2512 |
container_title | IEEE transactions on plasma science |
container_volume | 36 |
creator | Thiyagarajan, M. Scharer, J.E. |
description | We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave. |
doi_str_mv | 10.1109/TPS.2008.2004259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4663161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663161</ieee_id><sourcerecordid>875027832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EEqWwI7FELEwpZ1_ixGIqVXlIlUCizJabnFFK6hQ75fHf46oVA8vd8v3u8TF2zmHEOajr-fPLSACU25KJXB2wAVeoUoVFfsgGAApTLDkes5MQlgA8y0EM2M30e02-WZHrTZs8uk8KffNm-qZzSWeTOCJ1q2RmAvnk1pN5r7svlzQuGTf-lB1Z0wY62_che72bzicP6ezp_nEynqUVCtGnhSQoIa42VY2ZEVZaoRRmouaEQAUaA1yWGeECsV5YXmGurIVK8FrWmcIhu9rNXfvuYxMP1KsmVNS2xlG3Cbos4itFiSKSl__IZbfxLh6nucp5keUoIwQ7qPJdCJ6sXkcBxv9oDnrrUkeXeutS713GyMUu0hDRH55JiVxy_AVd6m09</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195174536</pqid></control><display><type>article</type><title>Experimental Investigation of 193-nm Laser Breakdown in Air</title><source>IEEE Electronic Library (IEL)</source><creator>Thiyagarajan, M. ; Scharer, J.E.</creator><creatorcontrib>Thiyagarajan, M. ; Scharer, J.E.</creatorcontrib><description>We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2008.2004259</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air ; Air plasma ; Analysis ; Breakdown ; breakdown scaling ; Electric breakdown ; Electric fields ; Electric power generation ; excimer laser ; Experiments ; Gas lasers ; Ionization ; Laser modes ; Laser theory ; laser-induced plasma ; Lasers ; Masers ; Mathematical models ; Measurement ; Plasma temperature ; Quantum cascade lasers ; Quantum well lasers ; Radiation ; shadowgraphy ; Thresholds ; Wavelength measurement ; Wavelengths</subject><ispartof>IEEE transactions on plasma science, 2008-10, Vol.36 (5), p.2512-2521</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</citedby><cites>FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thiyagarajan, M.</creatorcontrib><creatorcontrib>Scharer, J.E.</creatorcontrib><title>Experimental Investigation of 193-nm Laser Breakdown in Air</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave.</description><subject>Air</subject><subject>Air plasma</subject><subject>Analysis</subject><subject>Breakdown</subject><subject>breakdown scaling</subject><subject>Electric breakdown</subject><subject>Electric fields</subject><subject>Electric power generation</subject><subject>excimer laser</subject><subject>Experiments</subject><subject>Gas lasers</subject><subject>Ionization</subject><subject>Laser modes</subject><subject>Laser theory</subject><subject>laser-induced plasma</subject><subject>Lasers</subject><subject>Masers</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Plasma temperature</subject><subject>Quantum cascade lasers</subject><subject>Quantum well lasers</subject><subject>Radiation</subject><subject>shadowgraphy</subject><subject>Thresholds</subject><subject>Wavelength measurement</subject><subject>Wavelengths</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtPwzAQhy0EEqWwI7FELEwpZ1_ixGIqVXlIlUCizJabnFFK6hQ75fHf46oVA8vd8v3u8TF2zmHEOajr-fPLSACU25KJXB2wAVeoUoVFfsgGAApTLDkes5MQlgA8y0EM2M30e02-WZHrTZs8uk8KffNm-qZzSWeTOCJ1q2RmAvnk1pN5r7svlzQuGTf-lB1Z0wY62_che72bzicP6ezp_nEynqUVCtGnhSQoIa42VY2ZEVZaoRRmouaEQAUaA1yWGeECsV5YXmGurIVK8FrWmcIhu9rNXfvuYxMP1KsmVNS2xlG3Cbos4itFiSKSl__IZbfxLh6nucp5keUoIwQ7qPJdCJ6sXkcBxv9oDnrrUkeXeutS713GyMUu0hDRH55JiVxy_AVd6m09</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Thiyagarajan, M.</creator><creator>Scharer, J.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20081001</creationdate><title>Experimental Investigation of 193-nm Laser Breakdown in Air</title><author>Thiyagarajan, M. ; Scharer, J.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Air</topic><topic>Air plasma</topic><topic>Analysis</topic><topic>Breakdown</topic><topic>breakdown scaling</topic><topic>Electric breakdown</topic><topic>Electric fields</topic><topic>Electric power generation</topic><topic>excimer laser</topic><topic>Experiments</topic><topic>Gas lasers</topic><topic>Ionization</topic><topic>Laser modes</topic><topic>Laser theory</topic><topic>laser-induced plasma</topic><topic>Lasers</topic><topic>Masers</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Plasma temperature</topic><topic>Quantum cascade lasers</topic><topic>Quantum well lasers</topic><topic>Radiation</topic><topic>shadowgraphy</topic><topic>Thresholds</topic><topic>Wavelength measurement</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiyagarajan, M.</creatorcontrib><creatorcontrib>Scharer, J.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thiyagarajan, M.</au><au>Scharer, J.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation of 193-nm Laser Breakdown in Air</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>36</volume><issue>5</issue><spage>2512</spage><epage>2521</epage><pages>2512-2521</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2008.2004259</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2008-10, Vol.36 (5), p.2512-2521 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_4663161 |
source | IEEE Electronic Library (IEL) |
subjects | Air Air plasma Analysis Breakdown breakdown scaling Electric breakdown Electric fields Electric power generation excimer laser Experiments Gas lasers Ionization Laser modes Laser theory laser-induced plasma Lasers Masers Mathematical models Measurement Plasma temperature Quantum cascade lasers Quantum well lasers Radiation shadowgraphy Thresholds Wavelength measurement Wavelengths |
title | Experimental Investigation of 193-nm Laser Breakdown in Air |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20of%20193-nm%20Laser%20Breakdown%20in%20Air&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Thiyagarajan,%20M.&rft.date=2008-10-01&rft.volume=36&rft.issue=5&rft.spage=2512&rft.epage=2521&rft.pages=2512-2521&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2008.2004259&rft_dat=%3Cproquest_RIE%3E875027832%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195174536&rft_id=info:pmid/&rft_ieee_id=4663161&rfr_iscdi=true |