Experimental Investigation of 193-nm Laser Breakdown in Air

We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2008-10, Vol.36 (5), p.2512-2521
Hauptverfasser: Thiyagarajan, M., Scharer, J.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2521
container_issue 5
container_start_page 2512
container_title IEEE transactions on plasma science
container_volume 36
creator Thiyagarajan, M.
Scharer, J.E.
description We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave.
doi_str_mv 10.1109/TPS.2008.2004259
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4663161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663161</ieee_id><sourcerecordid>875027832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EEqWwI7FELEwpZ1_ixGIqVXlIlUCizJabnFFK6hQ75fHf46oVA8vd8v3u8TF2zmHEOajr-fPLSACU25KJXB2wAVeoUoVFfsgGAApTLDkes5MQlgA8y0EM2M30e02-WZHrTZs8uk8KffNm-qZzSWeTOCJ1q2RmAvnk1pN5r7svlzQuGTf-lB1Z0wY62_che72bzicP6ezp_nEynqUVCtGnhSQoIa42VY2ZEVZaoRRmouaEQAUaA1yWGeECsV5YXmGurIVK8FrWmcIhu9rNXfvuYxMP1KsmVNS2xlG3Cbos4itFiSKSl__IZbfxLh6nucp5keUoIwQ7qPJdCJ6sXkcBxv9oDnrrUkeXeutS713GyMUu0hDRH55JiVxy_AVd6m09</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195174536</pqid></control><display><type>article</type><title>Experimental Investigation of 193-nm Laser Breakdown in Air</title><source>IEEE Electronic Library (IEL)</source><creator>Thiyagarajan, M. ; Scharer, J.E.</creator><creatorcontrib>Thiyagarajan, M. ; Scharer, J.E.</creatorcontrib><description>We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2008.2004259</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air ; Air plasma ; Analysis ; Breakdown ; breakdown scaling ; Electric breakdown ; Electric fields ; Electric power generation ; excimer laser ; Experiments ; Gas lasers ; Ionization ; Laser modes ; Laser theory ; laser-induced plasma ; Lasers ; Masers ; Mathematical models ; Measurement ; Plasma temperature ; Quantum cascade lasers ; Quantum well lasers ; Radiation ; shadowgraphy ; Thresholds ; Wavelength measurement ; Wavelengths</subject><ispartof>IEEE transactions on plasma science, 2008-10, Vol.36 (5), p.2512-2521</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</citedby><cites>FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thiyagarajan, M.</creatorcontrib><creatorcontrib>Scharer, J.E.</creatorcontrib><title>Experimental Investigation of 193-nm Laser Breakdown in Air</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave.</description><subject>Air</subject><subject>Air plasma</subject><subject>Analysis</subject><subject>Breakdown</subject><subject>breakdown scaling</subject><subject>Electric breakdown</subject><subject>Electric fields</subject><subject>Electric power generation</subject><subject>excimer laser</subject><subject>Experiments</subject><subject>Gas lasers</subject><subject>Ionization</subject><subject>Laser modes</subject><subject>Laser theory</subject><subject>laser-induced plasma</subject><subject>Lasers</subject><subject>Masers</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Plasma temperature</subject><subject>Quantum cascade lasers</subject><subject>Quantum well lasers</subject><subject>Radiation</subject><subject>shadowgraphy</subject><subject>Thresholds</subject><subject>Wavelength measurement</subject><subject>Wavelengths</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtPwzAQhy0EEqWwI7FELEwpZ1_ixGIqVXlIlUCizJabnFFK6hQ75fHf46oVA8vd8v3u8TF2zmHEOajr-fPLSACU25KJXB2wAVeoUoVFfsgGAApTLDkes5MQlgA8y0EM2M30e02-WZHrTZs8uk8KffNm-qZzSWeTOCJ1q2RmAvnk1pN5r7svlzQuGTf-lB1Z0wY62_che72bzicP6ezp_nEynqUVCtGnhSQoIa42VY2ZEVZaoRRmouaEQAUaA1yWGeECsV5YXmGurIVK8FrWmcIhu9rNXfvuYxMP1KsmVNS2xlG3Cbos4itFiSKSl__IZbfxLh6nucp5keUoIwQ7qPJdCJ6sXkcBxv9oDnrrUkeXeutS713GyMUu0hDRH55JiVxy_AVd6m09</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Thiyagarajan, M.</creator><creator>Scharer, J.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20081001</creationdate><title>Experimental Investigation of 193-nm Laser Breakdown in Air</title><author>Thiyagarajan, M. ; Scharer, J.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-76e080813acd34a2f6f299342d1e30e73aa01684e3b33dbf1c359ff0c21d6d493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Air</topic><topic>Air plasma</topic><topic>Analysis</topic><topic>Breakdown</topic><topic>breakdown scaling</topic><topic>Electric breakdown</topic><topic>Electric fields</topic><topic>Electric power generation</topic><topic>excimer laser</topic><topic>Experiments</topic><topic>Gas lasers</topic><topic>Ionization</topic><topic>Laser modes</topic><topic>Laser theory</topic><topic>laser-induced plasma</topic><topic>Lasers</topic><topic>Masers</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Plasma temperature</topic><topic>Quantum cascade lasers</topic><topic>Quantum well lasers</topic><topic>Radiation</topic><topic>shadowgraphy</topic><topic>Thresholds</topic><topic>Wavelength measurement</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiyagarajan, M.</creatorcontrib><creatorcontrib>Scharer, J.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thiyagarajan, M.</au><au>Scharer, J.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation of 193-nm Laser Breakdown in Air</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>36</volume><issue>5</issue><spage>2512</spage><epage>2521</epage><pages>2512-2521</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>We present the measurements and analysis of laser-induced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-mum-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2008.2004259</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2008-10, Vol.36 (5), p.2512-2521
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_4663161
source IEEE Electronic Library (IEL)
subjects Air
Air plasma
Analysis
Breakdown
breakdown scaling
Electric breakdown
Electric fields
Electric power generation
excimer laser
Experiments
Gas lasers
Ionization
Laser modes
Laser theory
laser-induced plasma
Lasers
Masers
Mathematical models
Measurement
Plasma temperature
Quantum cascade lasers
Quantum well lasers
Radiation
shadowgraphy
Thresholds
Wavelength measurement
Wavelengths
title Experimental Investigation of 193-nm Laser Breakdown in Air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20of%20193-nm%20Laser%20Breakdown%20in%20Air&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Thiyagarajan,%20M.&rft.date=2008-10-01&rft.volume=36&rft.issue=5&rft.spage=2512&rft.epage=2521&rft.pages=2512-2521&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2008.2004259&rft_dat=%3Cproquest_RIE%3E875027832%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195174536&rft_id=info:pmid/&rft_ieee_id=4663161&rfr_iscdi=true