Adaptive diagnosis by pattern recognition: Application on an induction machine
In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ondel, O. Boutleux, E. Clerc, G. |
description | In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis. |
doi_str_mv | 10.1109/DEMPED.2005.4662491 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4662491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4662491</ieee_id><sourcerecordid>oai_HAL_hal_00399393v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h124t-4eda424a20225776b328d5cd78381440f13c03042a2c0c3715b298143bc423dd3</originalsourceid><addsrcrecordid>eNpFkE1vwjAMhjNNSGOMX8Al1x1gjp3SZrcKujGJfRw2abcqTQJkgrRqOyT-_cpAm2XJeu1Hr2wzNhIwEQLU3Tx7fsvmEwSIJnI6RanEBbuGOAFSAqPPy38hRY_1j6BCCfKKDZvmC7qQEShBffaSWl21fu-49XodysY3vDjwSretqwOvnSnXwbe-DPc8raqtN_ooeJc6cB_st_nVO202Prgb1lvpbeOG5zpgHw_Z-2wxXr4-Ps3S5XjTrdSOpbNaotQIiFEcTwvCxEbGxgklQkpYCTJAIFGjAUOxiApU3YQKI5GspQG7Pflu9Davar_T9SEvtc8X6TI_9qC7XpGivejY0Yn1zrk_-Pw3-gHWql39</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive diagnosis by pattern recognition: Application on an induction machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ondel, O. ; Boutleux, E. ; Clerc, G.</creator><creatorcontrib>Ondel, O. ; Boutleux, E. ; Clerc, G.</creatorcontrib><description>In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis.</description><identifier>ISBN: 0780391241</identifier><identifier>ISBN: 9780780391246</identifier><identifier>EISBN: 078039125X</identifier><identifier>EISBN: 9780780391253</identifier><identifier>DOI: 10.1109/DEMPED.2005.4662491</identifier><identifier>LCCN: 200592404</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dispersion ; Distance measurement ; Electric power ; Engineering Sciences ; Evolution (biology) ; Induction motors ; Pattern recognition ; Scattering ; Training</subject><ispartof>2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2005, p.1-7</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0567-0217 ; 0000-0002-9577-2438 ; 0000-0001-7202-056X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4662491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4662491$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00399393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ondel, O.</creatorcontrib><creatorcontrib>Boutleux, E.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><title>Adaptive diagnosis by pattern recognition: Application on an induction machine</title><title>2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives</title><addtitle>DEMPED</addtitle><description>In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis.</description><subject>Dispersion</subject><subject>Distance measurement</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Evolution (biology)</subject><subject>Induction motors</subject><subject>Pattern recognition</subject><subject>Scattering</subject><subject>Training</subject><isbn>0780391241</isbn><isbn>9780780391246</isbn><isbn>078039125X</isbn><isbn>9780780391253</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1vwjAMhjNNSGOMX8Al1x1gjp3SZrcKujGJfRw2abcqTQJkgrRqOyT-_cpAm2XJeu1Hr2wzNhIwEQLU3Tx7fsvmEwSIJnI6RanEBbuGOAFSAqPPy38hRY_1j6BCCfKKDZvmC7qQEShBffaSWl21fu-49XodysY3vDjwSretqwOvnSnXwbe-DPc8raqtN_ooeJc6cB_st_nVO202Prgb1lvpbeOG5zpgHw_Z-2wxXr4-Ps3S5XjTrdSOpbNaotQIiFEcTwvCxEbGxgklQkpYCTJAIFGjAUOxiApU3YQKI5GspQG7Pflu9Davar_T9SEvtc8X6TI_9qC7XpGivejY0Yn1zrk_-Pw3-gHWql39</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Ondel, O.</creator><creator>Boutleux, E.</creator><creator>Clerc, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0567-0217</orcidid><orcidid>https://orcid.org/0000-0002-9577-2438</orcidid><orcidid>https://orcid.org/0000-0001-7202-056X</orcidid></search><sort><creationdate>200509</creationdate><title>Adaptive diagnosis by pattern recognition: Application on an induction machine</title><author>Ondel, O. ; Boutleux, E. ; Clerc, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h124t-4eda424a20225776b328d5cd78381440f13c03042a2c0c3715b298143bc423dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Dispersion</topic><topic>Distance measurement</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Evolution (biology)</topic><topic>Induction motors</topic><topic>Pattern recognition</topic><topic>Scattering</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ondel, O.</creatorcontrib><creatorcontrib>Boutleux, E.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ondel, O.</au><au>Boutleux, E.</au><au>Clerc, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive diagnosis by pattern recognition: Application on an induction machine</atitle><btitle>2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives</btitle><stitle>DEMPED</stitle><date>2005-09</date><risdate>2005</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>0780391241</isbn><isbn>9780780391246</isbn><eisbn>078039125X</eisbn><eisbn>9780780391253</eisbn><abstract>In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/DEMPED.2005.4662491</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0567-0217</orcidid><orcidid>https://orcid.org/0000-0002-9577-2438</orcidid><orcidid>https://orcid.org/0000-0001-7202-056X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780391241 |
ispartof | 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2005, p.1-7 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4662491 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Dispersion Distance measurement Electric power Engineering Sciences Evolution (biology) Induction motors Pattern recognition Scattering Training |
title | Adaptive diagnosis by pattern recognition: Application on an induction machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20diagnosis%20by%20pattern%20recognition:%20Application%20on%20an%20induction%20machine&rft.btitle=2005%205th%20IEEE%20International%20Symposium%20on%20Diagnostics%20for%20Electric%20Machines,%20Power%20Electronics%20and%20Drives&rft.au=Ondel,%20O.&rft.date=2005-09&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=0780391241&rft.isbn_list=9780780391246&rft_id=info:doi/10.1109/DEMPED.2005.4662491&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00399393v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=078039125X&rft.eisbn_list=9780780391253&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4662491&rfr_iscdi=true |