Adaptive diagnosis by pattern recognition: Application on an induction machine

In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ondel, O., Boutleux, E., Clerc, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Ondel, O.
Boutleux, E.
Clerc, G.
description In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis.
doi_str_mv 10.1109/DEMPED.2005.4662491
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4662491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4662491</ieee_id><sourcerecordid>oai_HAL_hal_00399393v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h124t-4eda424a20225776b328d5cd78381440f13c03042a2c0c3715b298143bc423dd3</originalsourceid><addsrcrecordid>eNpFkE1vwjAMhjNNSGOMX8Al1x1gjp3SZrcKujGJfRw2abcqTQJkgrRqOyT-_cpAm2XJeu1Hr2wzNhIwEQLU3Tx7fsvmEwSIJnI6RanEBbuGOAFSAqPPy38hRY_1j6BCCfKKDZvmC7qQEShBffaSWl21fu-49XodysY3vDjwSretqwOvnSnXwbe-DPc8raqtN_ooeJc6cB_st_nVO202Prgb1lvpbeOG5zpgHw_Z-2wxXr4-Ps3S5XjTrdSOpbNaotQIiFEcTwvCxEbGxgklQkpYCTJAIFGjAUOxiApU3YQKI5GspQG7Pflu9Davar_T9SEvtc8X6TI_9qC7XpGivejY0Yn1zrk_-Pw3-gHWql39</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive diagnosis by pattern recognition: Application on an induction machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ondel, O. ; Boutleux, E. ; Clerc, G.</creator><creatorcontrib>Ondel, O. ; Boutleux, E. ; Clerc, G.</creatorcontrib><description>In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis.</description><identifier>ISBN: 0780391241</identifier><identifier>ISBN: 9780780391246</identifier><identifier>EISBN: 078039125X</identifier><identifier>EISBN: 9780780391253</identifier><identifier>DOI: 10.1109/DEMPED.2005.4662491</identifier><identifier>LCCN: 200592404</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dispersion ; Distance measurement ; Electric power ; Engineering Sciences ; Evolution (biology) ; Induction motors ; Pattern recognition ; Scattering ; Training</subject><ispartof>2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2005, p.1-7</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0567-0217 ; 0000-0002-9577-2438 ; 0000-0001-7202-056X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4662491$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4662491$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00399393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ondel, O.</creatorcontrib><creatorcontrib>Boutleux, E.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><title>Adaptive diagnosis by pattern recognition: Application on an induction machine</title><title>2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives</title><addtitle>DEMPED</addtitle><description>In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis.</description><subject>Dispersion</subject><subject>Distance measurement</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Evolution (biology)</subject><subject>Induction motors</subject><subject>Pattern recognition</subject><subject>Scattering</subject><subject>Training</subject><isbn>0780391241</isbn><isbn>9780780391246</isbn><isbn>078039125X</isbn><isbn>9780780391253</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1vwjAMhjNNSGOMX8Al1x1gjp3SZrcKujGJfRw2abcqTQJkgrRqOyT-_cpAm2XJeu1Hr2wzNhIwEQLU3Tx7fsvmEwSIJnI6RanEBbuGOAFSAqPPy38hRY_1j6BCCfKKDZvmC7qQEShBffaSWl21fu-49XodysY3vDjwSretqwOvnSnXwbe-DPc8raqtN_ooeJc6cB_st_nVO202Prgb1lvpbeOG5zpgHw_Z-2wxXr4-Ps3S5XjTrdSOpbNaotQIiFEcTwvCxEbGxgklQkpYCTJAIFGjAUOxiApU3YQKI5GspQG7Pflu9Davar_T9SEvtc8X6TI_9qC7XpGivejY0Yn1zrk_-Pw3-gHWql39</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Ondel, O.</creator><creator>Boutleux, E.</creator><creator>Clerc, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0567-0217</orcidid><orcidid>https://orcid.org/0000-0002-9577-2438</orcidid><orcidid>https://orcid.org/0000-0001-7202-056X</orcidid></search><sort><creationdate>200509</creationdate><title>Adaptive diagnosis by pattern recognition: Application on an induction machine</title><author>Ondel, O. ; Boutleux, E. ; Clerc, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h124t-4eda424a20225776b328d5cd78381440f13c03042a2c0c3715b298143bc423dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Dispersion</topic><topic>Distance measurement</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Evolution (biology)</topic><topic>Induction motors</topic><topic>Pattern recognition</topic><topic>Scattering</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ondel, O.</creatorcontrib><creatorcontrib>Boutleux, E.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ondel, O.</au><au>Boutleux, E.</au><au>Clerc, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive diagnosis by pattern recognition: Application on an induction machine</atitle><btitle>2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives</btitle><stitle>DEMPED</stitle><date>2005-09</date><risdate>2005</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>0780391241</isbn><isbn>9780780391246</isbn><eisbn>078039125X</eisbn><eisbn>9780780391253</eisbn><abstract>In this paper, a pattern recognition method is used to provide the tracking and the diagnosis of a system. To illustrate it, we used as application, an asynchronous motor 5.5 kW with squirrel-cage, in particular for the detection of broken bars, under any level of load. From measurements carried out on the system, parameters are calculated. These parameters are used to build up a pattern vector which is considered as the system signature. To determine this pattern vector, two methods are applied. One, well-known, sequential backward selection (SBS) and the other, which we developed, based on a genetic approach, with the advantage to determine the optimal dimension of the representation space and to give better results (value of criterion) than SBS. The determination of the decision space is carried out using a method of automatic classification called clustering. The decision phase is based on the ldquok-nearest neighborsrdquo rule, associated with an evolution tracking of system using trajectory allowing a diagnosis not only of states defined in the training set, but also of the intermediate states. The appearance of a new operating mode is taken into account in order to enrich the initial knowledge base and thus to improve the diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/DEMPED.2005.4662491</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0567-0217</orcidid><orcidid>https://orcid.org/0000-0002-9577-2438</orcidid><orcidid>https://orcid.org/0000-0001-7202-056X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780391241
ispartof 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2005, p.1-7
issn
language eng
recordid cdi_ieee_primary_4662491
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dispersion
Distance measurement
Electric power
Engineering Sciences
Evolution (biology)
Induction motors
Pattern recognition
Scattering
Training
title Adaptive diagnosis by pattern recognition: Application on an induction machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20diagnosis%20by%20pattern%20recognition:%20Application%20on%20an%20induction%20machine&rft.btitle=2005%205th%20IEEE%20International%20Symposium%20on%20Diagnostics%20for%20Electric%20Machines,%20Power%20Electronics%20and%20Drives&rft.au=Ondel,%20O.&rft.date=2005-09&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=0780391241&rft.isbn_list=9780780391246&rft_id=info:doi/10.1109/DEMPED.2005.4662491&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00399393v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=078039125X&rft.eisbn_list=9780780391253&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4662491&rfr_iscdi=true