The effect of sub-sampling in scale space texture classification using combined classifiers
Textures show multi-scale properties and hence multiresolution techniques are considered appropriate for texture classification. Recently, the authors proposed a multiresolution texture classification system based on scale space theory and combined classifiers. However, the use of multiresolution te...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 809 |
---|---|
container_issue | |
container_start_page | 806 |
container_title | |
container_volume | |
creator | Gangeh, M.J. ter Haar Romeny, B.M. Eswaran, C. |
description | Textures show multi-scale properties and hence multiresolution techniques are considered appropriate for texture classification. Recently, the authors proposed a multiresolution texture classification system based on scale space theory and combined classifiers. However, the use of multiresolution techniques increases the computational load and memory space required. Sub-sampling can help to reduce these side effects of multiresolution techniques. However, it may degrade the overall performance of the classification system. In this paper the effect of sub-sampling is investigated in scale space texture classification using combined classifiers. It is shown that sub-sampling can help to reduce both computational load and memory space required without compromising the performance of the system. |
doi_str_mv | 10.1109/ICIAS.2007.4658498 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4658498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4658498</ieee_id><sourcerecordid>4658498</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a81265499ef42307f0fe705696faecad78afb1801deccc38736913cb418ea6333</originalsourceid><addsrcrecordid>eNpVkEtLw0AcxFekoNZ8Ab3sF0jc9-NYgtpAwYP15KFsNv_VlbzIJqDfXotFcC7DMD_mMAjdUFJQSuxdVVab54IRoguhpBHWnKHMakMFE4Jyqcj5vyz5Cl0dccuM4vQCZSl9kB9xKwVhl-h1_w4YQgA_4yHgtNR5ct3Yxv4Nxx4n71rAaXQe8Ayf8zIB9q1LKYbo3RyHHi_pyPqhq2MPzV8LU7pGq-DaBNnJ1-jl4X5fbvPd02NVbnZ5pFrOuTOUKSmshSAYJzqQAJpIZVVw4F2jjQs1NYQ24L3nRnNlKfe1oAac4pyv0e3vbgSAwzjFzk1fh9M__BtRWVfR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The effect of sub-sampling in scale space texture classification using combined classifiers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gangeh, M.J. ; ter Haar Romeny, B.M. ; Eswaran, C.</creator><creatorcontrib>Gangeh, M.J. ; ter Haar Romeny, B.M. ; Eswaran, C.</creatorcontrib><description>Textures show multi-scale properties and hence multiresolution techniques are considered appropriate for texture classification. Recently, the authors proposed a multiresolution texture classification system based on scale space theory and combined classifiers. However, the use of multiresolution techniques increases the computational load and memory space required. Sub-sampling can help to reduce these side effects of multiresolution techniques. However, it may degrade the overall performance of the classification system. In this paper the effect of sub-sampling is investigated in scale space texture classification using combined classifiers. It is shown that sub-sampling can help to reduce both computational load and memory space required without compromising the performance of the system.</description><identifier>ISBN: 9781424413553</identifier><identifier>ISBN: 1424413559</identifier><identifier>EISBN: 9781424413560</identifier><identifier>EISBN: 1424413567</identifier><identifier>DOI: 10.1109/ICIAS.2007.4658498</identifier><identifier>LCCN: 2007928631</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Energy resolution ; Feature extraction ; Memory management ; Multimedia communication ; Principal component analysis ; Training</subject><ispartof>2007 International Conference on Intelligent and Advanced Systems, 2007, p.806-809</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4658498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4658498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gangeh, M.J.</creatorcontrib><creatorcontrib>ter Haar Romeny, B.M.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><title>The effect of sub-sampling in scale space texture classification using combined classifiers</title><title>2007 International Conference on Intelligent and Advanced Systems</title><addtitle>ICIAS</addtitle><description>Textures show multi-scale properties and hence multiresolution techniques are considered appropriate for texture classification. Recently, the authors proposed a multiresolution texture classification system based on scale space theory and combined classifiers. However, the use of multiresolution techniques increases the computational load and memory space required. Sub-sampling can help to reduce these side effects of multiresolution techniques. However, it may degrade the overall performance of the classification system. In this paper the effect of sub-sampling is investigated in scale space texture classification using combined classifiers. It is shown that sub-sampling can help to reduce both computational load and memory space required without compromising the performance of the system.</description><subject>Artificial intelligence</subject><subject>Energy resolution</subject><subject>Feature extraction</subject><subject>Memory management</subject><subject>Multimedia communication</subject><subject>Principal component analysis</subject><subject>Training</subject><isbn>9781424413553</isbn><isbn>1424413559</isbn><isbn>9781424413560</isbn><isbn>1424413567</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AcxFekoNZ8Ab3sF0jc9-NYgtpAwYP15KFsNv_VlbzIJqDfXotFcC7DMD_mMAjdUFJQSuxdVVab54IRoguhpBHWnKHMakMFE4Jyqcj5vyz5Cl0dccuM4vQCZSl9kB9xKwVhl-h1_w4YQgA_4yHgtNR5ct3Yxv4Nxx4n71rAaXQe8Ayf8zIB9q1LKYbo3RyHHi_pyPqhq2MPzV8LU7pGq-DaBNnJ1-jl4X5fbvPd02NVbnZ5pFrOuTOUKSmshSAYJzqQAJpIZVVw4F2jjQs1NYQ24L3nRnNlKfe1oAac4pyv0e3vbgSAwzjFzk1fh9M__BtRWVfR</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Gangeh, M.J.</creator><creator>ter Haar Romeny, B.M.</creator><creator>Eswaran, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>The effect of sub-sampling in scale space texture classification using combined classifiers</title><author>Gangeh, M.J. ; ter Haar Romeny, B.M. ; Eswaran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a81265499ef42307f0fe705696faecad78afb1801deccc38736913cb418ea6333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Energy resolution</topic><topic>Feature extraction</topic><topic>Memory management</topic><topic>Multimedia communication</topic><topic>Principal component analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Gangeh, M.J.</creatorcontrib><creatorcontrib>ter Haar Romeny, B.M.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gangeh, M.J.</au><au>ter Haar Romeny, B.M.</au><au>Eswaran, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The effect of sub-sampling in scale space texture classification using combined classifiers</atitle><btitle>2007 International Conference on Intelligent and Advanced Systems</btitle><stitle>ICIAS</stitle><date>2007-11</date><risdate>2007</risdate><spage>806</spage><epage>809</epage><pages>806-809</pages><isbn>9781424413553</isbn><isbn>1424413559</isbn><eisbn>9781424413560</eisbn><eisbn>1424413567</eisbn><abstract>Textures show multi-scale properties and hence multiresolution techniques are considered appropriate for texture classification. Recently, the authors proposed a multiresolution texture classification system based on scale space theory and combined classifiers. However, the use of multiresolution techniques increases the computational load and memory space required. Sub-sampling can help to reduce these side effects of multiresolution techniques. However, it may degrade the overall performance of the classification system. In this paper the effect of sub-sampling is investigated in scale space texture classification using combined classifiers. It is shown that sub-sampling can help to reduce both computational load and memory space required without compromising the performance of the system.</abstract><pub>IEEE</pub><doi>10.1109/ICIAS.2007.4658498</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424413553 |
ispartof | 2007 International Conference on Intelligent and Advanced Systems, 2007, p.806-809 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4658498 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Energy resolution Feature extraction Memory management Multimedia communication Principal component analysis Training |
title | The effect of sub-sampling in scale space texture classification using combined classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20effect%20of%20sub-sampling%20in%20scale%20space%20texture%20classification%20using%20combined%20classifiers&rft.btitle=2007%20International%20Conference%20on%20Intelligent%20and%20Advanced%20Systems&rft.au=Gangeh,%20M.J.&rft.date=2007-11&rft.spage=806&rft.epage=809&rft.pages=806-809&rft.isbn=9781424413553&rft.isbn_list=1424413559&rft_id=info:doi/10.1109/ICIAS.2007.4658498&rft_dat=%3Cieee_6IE%3E4658498%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424413560&rft.eisbn_list=1424413567&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4658498&rfr_iscdi=true |