Feature selection for segmentation of 2-D electrophoresis gel images
Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection beca...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 344 |
---|---|
container_issue | |
container_start_page | 341 |
container_title | |
container_volume | |
creator | Matuzevicius, D. Navakauskas, D. |
description | Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots. |
doi_str_mv | 10.1109/BEC.2008.4657550 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4657550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4657550</ieee_id><sourcerecordid>4657550</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-177a6610fa786c8961489ceeb481a3f568e4e9b79afe841a7c8d7f166915b5133</originalsourceid><addsrcrecordid>eNotUE1Lw0AUXNGCbc1d8LJ_IPG97PdR01aFghc9l018GyNpU3bjwX9vrJ3LMMPMezCM3SIUiODuH9dVUQLYQmpllIILljljUZZSlqBBXbLFWShnr9gcjdC5MKBmbPHXcwBoy2uWpfQFE6QSEt2crTbkx-9IPFFPzdgNBx6GOKl2T4fRn4wh8DJf8VMgDsfPIVLqEm-p593et5Ru2Cz4PlF25iV736zfqud8-_r0Uj1s8w6NGnM0xmuNELyxurFOo7SuIaqlRS-C0pYkudo4H8hK9KaxHyag1g5VrVCIJbv7v9sR0e4Yp-_xZ3deRPwCCcROzg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature selection for segmentation of 2-D electrophoresis gel images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matuzevicius, D. ; Navakauskas, D.</creator><creatorcontrib>Matuzevicius, D. ; Navakauskas, D.</creatorcontrib><description>Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots.</description><identifier>ISSN: 1736-3705</identifier><identifier>ISBN: 1424420598</identifier><identifier>ISBN: 9781424420599</identifier><identifier>EISBN: 9781424420605</identifier><identifier>EISBN: 1424420601</identifier><identifier>DOI: 10.1109/BEC.2008.4657550</identifier><identifier>LCCN: 2008900182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Feature extraction ; Image segmentation ; Nonhomogeneous media ; Pixel ; Proteins ; World Wide Web</subject><ispartof>2008 11th International Biennial Baltic Electronics Conference, 2008, p.341-344</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4657550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4657550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matuzevicius, D.</creatorcontrib><creatorcontrib>Navakauskas, D.</creatorcontrib><title>Feature selection for segmentation of 2-D electrophoresis gel images</title><title>2008 11th International Biennial Baltic Electronics Conference</title><addtitle>BEC</addtitle><description>Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots.</description><subject>Artificial neural networks</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Nonhomogeneous media</subject><subject>Pixel</subject><subject>Proteins</subject><subject>World Wide Web</subject><issn>1736-3705</issn><isbn>1424420598</isbn><isbn>9781424420599</isbn><isbn>9781424420605</isbn><isbn>1424420601</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUE1Lw0AUXNGCbc1d8LJ_IPG97PdR01aFghc9l018GyNpU3bjwX9vrJ3LMMPMezCM3SIUiODuH9dVUQLYQmpllIILljljUZZSlqBBXbLFWShnr9gcjdC5MKBmbPHXcwBoy2uWpfQFE6QSEt2crTbkx-9IPFFPzdgNBx6GOKl2T4fRn4wh8DJf8VMgDsfPIVLqEm-p593et5Ru2Cz4PlF25iV736zfqud8-_r0Uj1s8w6NGnM0xmuNELyxurFOo7SuIaqlRS-C0pYkudo4H8hK9KaxHyag1g5VrVCIJbv7v9sR0e4Yp-_xZ3deRPwCCcROzg</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Matuzevicius, D.</creator><creator>Navakauskas, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Feature selection for segmentation of 2-D electrophoresis gel images</title><author>Matuzevicius, D. ; Navakauskas, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-177a6610fa786c8961489ceeb481a3f568e4e9b79afe841a7c8d7f166915b5133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Nonhomogeneous media</topic><topic>Pixel</topic><topic>Proteins</topic><topic>World Wide Web</topic><toplevel>online_resources</toplevel><creatorcontrib>Matuzevicius, D.</creatorcontrib><creatorcontrib>Navakauskas, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matuzevicius, D.</au><au>Navakauskas, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature selection for segmentation of 2-D electrophoresis gel images</atitle><btitle>2008 11th International Biennial Baltic Electronics Conference</btitle><stitle>BEC</stitle><date>2008-10</date><risdate>2008</risdate><spage>341</spage><epage>344</epage><pages>341-344</pages><issn>1736-3705</issn><isbn>1424420598</isbn><isbn>9781424420599</isbn><eisbn>9781424420605</eisbn><eisbn>1424420601</eisbn><abstract>Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots.</abstract><pub>IEEE</pub><doi>10.1109/BEC.2008.4657550</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1736-3705 |
ispartof | 2008 11th International Biennial Baltic Electronics Conference, 2008, p.341-344 |
issn | 1736-3705 |
language | eng |
recordid | cdi_ieee_primary_4657550 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Feature extraction Image segmentation Nonhomogeneous media Pixel Proteins World Wide Web |
title | Feature selection for segmentation of 2-D electrophoresis gel images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20selection%20for%20segmentation%20of%202-D%20electrophoresis%20gel%20images&rft.btitle=2008%2011th%20International%20Biennial%20Baltic%20Electronics%20Conference&rft.au=Matuzevicius,%20D.&rft.date=2008-10&rft.spage=341&rft.epage=344&rft.pages=341-344&rft.issn=1736-3705&rft.isbn=1424420598&rft.isbn_list=9781424420599&rft_id=info:doi/10.1109/BEC.2008.4657550&rft_dat=%3Cieee_6IE%3E4657550%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424420605&rft.eisbn_list=1424420601&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4657550&rfr_iscdi=true |