Feature selection for segmentation of 2-D electrophoresis gel images

Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection beca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matuzevicius, D., Navakauskas, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue
container_start_page 341
container_title
container_volume
creator Matuzevicius, D.
Navakauskas, D.
description Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots.
doi_str_mv 10.1109/BEC.2008.4657550
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4657550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4657550</ieee_id><sourcerecordid>4657550</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-177a6610fa786c8961489ceeb481a3f568e4e9b79afe841a7c8d7f166915b5133</originalsourceid><addsrcrecordid>eNotUE1Lw0AUXNGCbc1d8LJ_IPG97PdR01aFghc9l018GyNpU3bjwX9vrJ3LMMPMezCM3SIUiODuH9dVUQLYQmpllIILljljUZZSlqBBXbLFWShnr9gcjdC5MKBmbPHXcwBoy2uWpfQFE6QSEt2crTbkx-9IPFFPzdgNBx6GOKl2T4fRn4wh8DJf8VMgDsfPIVLqEm-p593et5Ru2Cz4PlF25iV736zfqud8-_r0Uj1s8w6NGnM0xmuNELyxurFOo7SuIaqlRS-C0pYkudo4H8hK9KaxHyag1g5VrVCIJbv7v9sR0e4Yp-_xZ3deRPwCCcROzg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature selection for segmentation of 2-D electrophoresis gel images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matuzevicius, D. ; Navakauskas, D.</creator><creatorcontrib>Matuzevicius, D. ; Navakauskas, D.</creatorcontrib><description>Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots.</description><identifier>ISSN: 1736-3705</identifier><identifier>ISBN: 1424420598</identifier><identifier>ISBN: 9781424420599</identifier><identifier>EISBN: 9781424420605</identifier><identifier>EISBN: 1424420601</identifier><identifier>DOI: 10.1109/BEC.2008.4657550</identifier><identifier>LCCN: 2008900182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Feature extraction ; Image segmentation ; Nonhomogeneous media ; Pixel ; Proteins ; World Wide Web</subject><ispartof>2008 11th International Biennial Baltic Electronics Conference, 2008, p.341-344</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4657550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4657550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matuzevicius, D.</creatorcontrib><creatorcontrib>Navakauskas, D.</creatorcontrib><title>Feature selection for segmentation of 2-D electrophoresis gel images</title><title>2008 11th International Biennial Baltic Electronics Conference</title><addtitle>BEC</addtitle><description>Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots.</description><subject>Artificial neural networks</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Nonhomogeneous media</subject><subject>Pixel</subject><subject>Proteins</subject><subject>World Wide Web</subject><issn>1736-3705</issn><isbn>1424420598</isbn><isbn>9781424420599</isbn><isbn>9781424420605</isbn><isbn>1424420601</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUE1Lw0AUXNGCbc1d8LJ_IPG97PdR01aFghc9l018GyNpU3bjwX9vrJ3LMMPMezCM3SIUiODuH9dVUQLYQmpllIILljljUZZSlqBBXbLFWShnr9gcjdC5MKBmbPHXcwBoy2uWpfQFE6QSEt2crTbkx-9IPFFPzdgNBx6GOKl2T4fRn4wh8DJf8VMgDsfPIVLqEm-p593et5Ru2Cz4PlF25iV736zfqud8-_r0Uj1s8w6NGnM0xmuNELyxurFOo7SuIaqlRS-C0pYkudo4H8hK9KaxHyag1g5VrVCIJbv7v9sR0e4Yp-_xZ3deRPwCCcROzg</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Matuzevicius, D.</creator><creator>Navakauskas, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Feature selection for segmentation of 2-D electrophoresis gel images</title><author>Matuzevicius, D. ; Navakauskas, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-177a6610fa786c8961489ceeb481a3f568e4e9b79afe841a7c8d7f166915b5133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Nonhomogeneous media</topic><topic>Pixel</topic><topic>Proteins</topic><topic>World Wide Web</topic><toplevel>online_resources</toplevel><creatorcontrib>Matuzevicius, D.</creatorcontrib><creatorcontrib>Navakauskas, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matuzevicius, D.</au><au>Navakauskas, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature selection for segmentation of 2-D electrophoresis gel images</atitle><btitle>2008 11th International Biennial Baltic Electronics Conference</btitle><stitle>BEC</stitle><date>2008-10</date><risdate>2008</risdate><spage>341</spage><epage>344</epage><pages>341-344</pages><issn>1736-3705</issn><isbn>1424420598</isbn><isbn>9781424420599</isbn><eisbn>9781424420605</eisbn><eisbn>1424420601</eisbn><abstract>Two-dimensional gel electrophoresis is the powerful technique used by biochemists to resolve and visualize protein samples.Commonly gels produced from several samples are analyzed in order to detect changes of protein expression. Thus computer-aided gel image analysis for protein spot detection became the main step in the whole process.Nevertheless accurate automatic spot detection is still difficult due to large variations in spot shape, image background and various inevitable artifacts. In this paper we investigate features of two-dimensional electrophoresis gel images.We look for those image features that will yield good results of protein spot detection done by the Feedforward Multilayer Neural Network. Feature comparison and spot segmentation results are presented and indicate that rotational symmetry features empowers segmentation of saturated and overlapped protein spots.</abstract><pub>IEEE</pub><doi>10.1109/BEC.2008.4657550</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1736-3705
ispartof 2008 11th International Biennial Baltic Electronics Conference, 2008, p.341-344
issn 1736-3705
language eng
recordid cdi_ieee_primary_4657550
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Feature extraction
Image segmentation
Nonhomogeneous media
Pixel
Proteins
World Wide Web
title Feature selection for segmentation of 2-D electrophoresis gel images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20selection%20for%20segmentation%20of%202-D%20electrophoresis%20gel%20images&rft.btitle=2008%2011th%20International%20Biennial%20Baltic%20Electronics%20Conference&rft.au=Matuzevicius,%20D.&rft.date=2008-10&rft.spage=341&rft.epage=344&rft.pages=341-344&rft.issn=1736-3705&rft.isbn=1424420598&rft.isbn_list=9781424420599&rft_id=info:doi/10.1109/BEC.2008.4657550&rft_dat=%3Cieee_6IE%3E4657550%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424420605&rft.eisbn_list=1424420601&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4657550&rfr_iscdi=true