A Hybrid ML Decoding Scheme for Multiple Input Multiple Output Signals on Partitioned Tree

In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output (MIMO) systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jongho Oh, Iickho Song, Juho Park, Jeong, M.A., Myeong Soo Choi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Jongho Oh
Iickho Song
Juho Park
Jeong, M.A.
Myeong Soo Choi
description In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output (MIMO) systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, maximally exploiting the advantages of both the depth- and breadth-first search methods. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.
doi_str_mv 10.1109/VETECF.2008.94
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4656926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4656926</ieee_id><sourcerecordid>4656926</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1a008eba93e38f58fd627dea66fa3622776fde2ab9ffa701a8e7a76be2f131c63</originalsourceid><addsrcrecordid>eNpFkE1Lw0AYhNcvsK29evGyfyBx33eT3eRYYr-gpUKjiJeySd6tK2lS0uTQf29ExdPwMMzADGP3IHwAET--TtNpMvNRiMiPgws2jnUEAQYBaER5yQYYau1hoMIrNvwz4O2aDfq08KSQ0S0bnk6fQggAhQP2PuGLc9a4gq9X_InyunDVnm_zDzoQt3XD113ZumNJfFkdu_YfN137zVu3r0x54nXFn03TutbVFRU8bYju2I3tLRr_6oi9zKZpsvBWm_kymaw8BzpsPTD9GspMLElGNoxsoVAXZJSyRipErZUtCE0WW2u0ABORNlplhBYk5EqO2MNPryOi3bFxB9Ocd_0HKkYlvwDUyFZt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Hybrid ML Decoding Scheme for Multiple Input Multiple Output Signals on Partitioned Tree</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jongho Oh ; Iickho Song ; Juho Park ; Jeong, M.A. ; Myeong Soo Choi</creator><creatorcontrib>Jongho Oh ; Iickho Song ; Juho Park ; Jeong, M.A. ; Myeong Soo Choi</creatorcontrib><description>In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output (MIMO) systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, maximally exploiting the advantages of both the depth- and breadth-first search methods. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.</description><identifier>ISSN: 1090-3038</identifier><identifier>ISBN: 142441721X</identifier><identifier>ISBN: 9781424417216</identifier><identifier>EISSN: 2577-2465</identifier><identifier>EISBN: 9781424417223</identifier><identifier>EISBN: 1424417228</identifier><identifier>DOI: 10.1109/VETECF.2008.94</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit error rate ; Complexity theory ; Decision feedback equalizers ; Decoding ; MIMO ; Search methods ; Signal to noise ratio</subject><ispartof>2008 IEEE 68th Vehicular Technology Conference, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4656926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4656926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jongho Oh</creatorcontrib><creatorcontrib>Iickho Song</creatorcontrib><creatorcontrib>Juho Park</creatorcontrib><creatorcontrib>Jeong, M.A.</creatorcontrib><creatorcontrib>Myeong Soo Choi</creatorcontrib><title>A Hybrid ML Decoding Scheme for Multiple Input Multiple Output Signals on Partitioned Tree</title><title>2008 IEEE 68th Vehicular Technology Conference</title><addtitle>VETECF</addtitle><description>In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output (MIMO) systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, maximally exploiting the advantages of both the depth- and breadth-first search methods. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.</description><subject>Bit error rate</subject><subject>Complexity theory</subject><subject>Decision feedback equalizers</subject><subject>Decoding</subject><subject>MIMO</subject><subject>Search methods</subject><subject>Signal to noise ratio</subject><issn>1090-3038</issn><issn>2577-2465</issn><isbn>142441721X</isbn><isbn>9781424417216</isbn><isbn>9781424417223</isbn><isbn>1424417228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AYhNcvsK29evGyfyBx33eT3eRYYr-gpUKjiJeySd6tK2lS0uTQf29ExdPwMMzADGP3IHwAET--TtNpMvNRiMiPgws2jnUEAQYBaER5yQYYau1hoMIrNvwz4O2aDfq08KSQ0S0bnk6fQggAhQP2PuGLc9a4gq9X_InyunDVnm_zDzoQt3XD113ZumNJfFkdu_YfN137zVu3r0x54nXFn03TutbVFRU8bYju2I3tLRr_6oi9zKZpsvBWm_kymaw8BzpsPTD9GspMLElGNoxsoVAXZJSyRipErZUtCE0WW2u0ABORNlplhBYk5EqO2MNPryOi3bFxB9Ocd_0HKkYlvwDUyFZt</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Jongho Oh</creator><creator>Iickho Song</creator><creator>Juho Park</creator><creator>Jeong, M.A.</creator><creator>Myeong Soo Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200809</creationdate><title>A Hybrid ML Decoding Scheme for Multiple Input Multiple Output Signals on Partitioned Tree</title><author>Jongho Oh ; Iickho Song ; Juho Park ; Jeong, M.A. ; Myeong Soo Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1a008eba93e38f58fd627dea66fa3622776fde2ab9ffa701a8e7a76be2f131c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bit error rate</topic><topic>Complexity theory</topic><topic>Decision feedback equalizers</topic><topic>Decoding</topic><topic>MIMO</topic><topic>Search methods</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Jongho Oh</creatorcontrib><creatorcontrib>Iickho Song</creatorcontrib><creatorcontrib>Juho Park</creatorcontrib><creatorcontrib>Jeong, M.A.</creatorcontrib><creatorcontrib>Myeong Soo Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jongho Oh</au><au>Iickho Song</au><au>Juho Park</au><au>Jeong, M.A.</au><au>Myeong Soo Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Hybrid ML Decoding Scheme for Multiple Input Multiple Output Signals on Partitioned Tree</atitle><btitle>2008 IEEE 68th Vehicular Technology Conference</btitle><stitle>VETECF</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1090-3038</issn><eissn>2577-2465</eissn><isbn>142441721X</isbn><isbn>9781424417216</isbn><eisbn>9781424417223</eisbn><eisbn>1424417228</eisbn><abstract>In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output (MIMO) systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, maximally exploiting the advantages of both the depth- and breadth-first search methods. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.</abstract><pub>IEEE</pub><doi>10.1109/VETECF.2008.94</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1090-3038
ispartof 2008 IEEE 68th Vehicular Technology Conference, 2008, p.1-5
issn 1090-3038
2577-2465
language eng
recordid cdi_ieee_primary_4656926
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit error rate
Complexity theory
Decision feedback equalizers
Decoding
MIMO
Search methods
Signal to noise ratio
title A Hybrid ML Decoding Scheme for Multiple Input Multiple Output Signals on Partitioned Tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Hybrid%20ML%20Decoding%20Scheme%20for%20Multiple%20Input%20Multiple%20Output%20Signals%20on%20Partitioned%20Tree&rft.btitle=2008%20IEEE%2068th%20Vehicular%20Technology%20Conference&rft.au=Jongho%20Oh&rft.date=2008-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1090-3038&rft.eissn=2577-2465&rft.isbn=142441721X&rft.isbn_list=9781424417216&rft_id=info:doi/10.1109/VETECF.2008.94&rft_dat=%3Cieee_6IE%3E4656926%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424417223&rft.eisbn_list=1424417228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4656926&rfr_iscdi=true