A Hybrid ML Decoding Scheme for Multiple Input Multiple Output Signals on Partitioned Tree
In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output (MIMO) systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searche...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output (MIMO) systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, maximally exploiting the advantages of both the depth- and breadth-first search methods. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance. |
---|---|
ISSN: | 1090-3038 2577-2465 |
DOI: | 10.1109/VETECF.2008.94 |