People Detection under Occlusion in Multiple Camera Views

This paper proposes a method to locate people on a reference plane using multiple cameras. Previous works rely on people trajectories and color models to solve occlusion.This new approach solves people detection under occlusion by accumulating evidence from multiple views instantaneously and does no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santos, T.T., Morimoto, C.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue
container_start_page 53
container_title
container_volume
creator Santos, T.T.
Morimoto, C.H.
description This paper proposes a method to locate people on a reference plane using multiple cameras. Previous works rely on people trajectories and color models to solve occlusion.This new approach solves people detection under occlusion by accumulating evidence from multiple views instantaneously and does not rely on previous segmentation of individuals in foreground data or any tracking information.First, foreground data from one view, segmented using background subtraction, is projected onto the ground plane or reference image. The projected foreground of a second view overlaps the first projected foreground only on the points where the foreground intersects the ground plane.Thus, by accumulating the evidence from multiple views,people can be located by detecting local maxima on the accumulated reference image. Experimental results using publicly available data from PETSpsila06 [9] show that the method robustly locates people in very challenging situations with occlusion in most of the views. The locations on the ground plane can further be used for segmentation and tracking on each camera view under severe occlusion.
doi_str_mv 10.1109/SIBGRAPI.2008.25
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4654143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4654143</ieee_id><sourcerecordid>4654143</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-826daf8a3bf5237f75723647da07095d662f471df2bc9ba42312c5e5defe3a9f3</originalsourceid><addsrcrecordid>eNotj8lqwzAURUUHqJN2X-jGP2BH0tO4TN00MaQkdNoG2XoCFccJHij9-ya0q8uFw-VcQu4ZzRmjdvZWPi5f59sy55SanMsLknDQOpOCqUsyoVpZCSANvyIJk0AzZkDckEnff1HKrFUmIXaLh2OD6RMOWA_x0KZj67FLN3XdjP25xzZ9GZshnqnC7bFz6WfE7_6WXAfX9Hj3n1Py8bx4L1bZerMsi_k6i5zpITNceReMgyrIk13QUnNQQntHNbXSK8WD0MwHXtW2coID47VE6TEgOBtgSh7-diMi7o5d3LvuZyfU6aUA-AXR1Ugu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>People Detection under Occlusion in Multiple Camera Views</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santos, T.T. ; Morimoto, C.H.</creator><creatorcontrib>Santos, T.T. ; Morimoto, C.H.</creatorcontrib><description>This paper proposes a method to locate people on a reference plane using multiple cameras. Previous works rely on people trajectories and color models to solve occlusion.This new approach solves people detection under occlusion by accumulating evidence from multiple views instantaneously and does not rely on previous segmentation of individuals in foreground data or any tracking information.First, foreground data from one view, segmented using background subtraction, is projected onto the ground plane or reference image. The projected foreground of a second view overlaps the first projected foreground only on the points where the foreground intersects the ground plane.Thus, by accumulating the evidence from multiple views,people can be located by detecting local maxima on the accumulated reference image. Experimental results using publicly available data from PETSpsila06 [9] show that the method robustly locates people in very challenging situations with occlusion in most of the views. The locations on the ground plane can further be used for segmentation and tracking on each camera view under severe occlusion.</description><identifier>ISSN: 1530-1834</identifier><identifier>ISBN: 0769533582</identifier><identifier>ISBN: 9780769533582</identifier><identifier>EISSN: 2377-5416</identifier><identifier>DOI: 10.1109/SIBGRAPI.2008.25</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Classification algorithms ; Computational modeling ; detection ; Floors ; Image color analysis ; Image segmentation ; multiple view ; Pixel ; surveillance ; video analysis</subject><ispartof>2008 XXI Brazilian Symposium on Computer Graphics and Image Processing, 2008, p.53-60</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4654143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4654143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santos, T.T.</creatorcontrib><creatorcontrib>Morimoto, C.H.</creatorcontrib><title>People Detection under Occlusion in Multiple Camera Views</title><title>2008 XXI Brazilian Symposium on Computer Graphics and Image Processing</title><addtitle>SIBGRA</addtitle><description>This paper proposes a method to locate people on a reference plane using multiple cameras. Previous works rely on people trajectories and color models to solve occlusion.This new approach solves people detection under occlusion by accumulating evidence from multiple views instantaneously and does not rely on previous segmentation of individuals in foreground data or any tracking information.First, foreground data from one view, segmented using background subtraction, is projected onto the ground plane or reference image. The projected foreground of a second view overlaps the first projected foreground only on the points where the foreground intersects the ground plane.Thus, by accumulating the evidence from multiple views,people can be located by detecting local maxima on the accumulated reference image. Experimental results using publicly available data from PETSpsila06 [9] show that the method robustly locates people in very challenging situations with occlusion in most of the views. The locations on the ground plane can further be used for segmentation and tracking on each camera view under severe occlusion.</description><subject>Cameras</subject><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>detection</subject><subject>Floors</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>multiple view</subject><subject>Pixel</subject><subject>surveillance</subject><subject>video analysis</subject><issn>1530-1834</issn><issn>2377-5416</issn><isbn>0769533582</isbn><isbn>9780769533582</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8lqwzAURUUHqJN2X-jGP2BH0tO4TN00MaQkdNoG2XoCFccJHij9-ya0q8uFw-VcQu4ZzRmjdvZWPi5f59sy55SanMsLknDQOpOCqUsyoVpZCSANvyIJk0AzZkDckEnff1HKrFUmIXaLh2OD6RMOWA_x0KZj67FLN3XdjP25xzZ9GZshnqnC7bFz6WfE7_6WXAfX9Hj3n1Py8bx4L1bZerMsi_k6i5zpITNceReMgyrIk13QUnNQQntHNbXSK8WD0MwHXtW2coID47VE6TEgOBtgSh7-diMi7o5d3LvuZyfU6aUA-AXR1Ugu</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Santos, T.T.</creator><creator>Morimoto, C.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>People Detection under Occlusion in Multiple Camera Views</title><author>Santos, T.T. ; Morimoto, C.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-826daf8a3bf5237f75723647da07095d662f471df2bc9ba42312c5e5defe3a9f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cameras</topic><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>detection</topic><topic>Floors</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>multiple view</topic><topic>Pixel</topic><topic>surveillance</topic><topic>video analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, T.T.</creatorcontrib><creatorcontrib>Morimoto, C.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, T.T.</au><au>Morimoto, C.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>People Detection under Occlusion in Multiple Camera Views</atitle><btitle>2008 XXI Brazilian Symposium on Computer Graphics and Image Processing</btitle><stitle>SIBGRA</stitle><date>2008-10</date><risdate>2008</risdate><spage>53</spage><epage>60</epage><pages>53-60</pages><issn>1530-1834</issn><eissn>2377-5416</eissn><isbn>0769533582</isbn><isbn>9780769533582</isbn><abstract>This paper proposes a method to locate people on a reference plane using multiple cameras. Previous works rely on people trajectories and color models to solve occlusion.This new approach solves people detection under occlusion by accumulating evidence from multiple views instantaneously and does not rely on previous segmentation of individuals in foreground data or any tracking information.First, foreground data from one view, segmented using background subtraction, is projected onto the ground plane or reference image. The projected foreground of a second view overlaps the first projected foreground only on the points where the foreground intersects the ground plane.Thus, by accumulating the evidence from multiple views,people can be located by detecting local maxima on the accumulated reference image. Experimental results using publicly available data from PETSpsila06 [9] show that the method robustly locates people in very challenging situations with occlusion in most of the views. The locations on the ground plane can further be used for segmentation and tracking on each camera view under severe occlusion.</abstract><pub>IEEE</pub><doi>10.1109/SIBGRAPI.2008.25</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1834
ispartof 2008 XXI Brazilian Symposium on Computer Graphics and Image Processing, 2008, p.53-60
issn 1530-1834
2377-5416
language eng
recordid cdi_ieee_primary_4654143
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Classification algorithms
Computational modeling
detection
Floors
Image color analysis
Image segmentation
multiple view
Pixel
surveillance
video analysis
title People Detection under Occlusion in Multiple Camera Views
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=People%20Detection%20under%20Occlusion%20in%20Multiple%20Camera%20Views&rft.btitle=2008%20XXI%20Brazilian%20Symposium%20on%20Computer%20Graphics%20and%20Image%20Processing&rft.au=Santos,%20T.T.&rft.date=2008-10&rft.spage=53&rft.epage=60&rft.pages=53-60&rft.issn=1530-1834&rft.eissn=2377-5416&rft.isbn=0769533582&rft.isbn_list=9780769533582&rft_id=info:doi/10.1109/SIBGRAPI.2008.25&rft_dat=%3Cieee_6IE%3E4654143%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4654143&rfr_iscdi=true