Fast color/texture segmentation for outdoor robots

We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Blas, M.R., Agrawal, M., Sundaresan, A., Konolige, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4085
container_issue
container_start_page 4078
container_title
container_volume
creator Blas, M.R.
Agrawal, M.
Sundaresan, A.
Konolige, K.
description We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning.
doi_str_mv 10.1109/IROS.2008.4651086
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4651086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4651086</ieee_id><sourcerecordid>4651086</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-80993b46e4c01a527820e8f0c353b4f819a85483f398767cf232d92e4d4f1ce83</originalsourceid><addsrcrecordid>eNpVkNtKAzEUReOlYK3zAeLL_MBMT04uc_IoxWqhUPDyXNKZREbaRpIU9O-dYhHcLwv2gv2wGbvlUHMOZrp4Xr3UCEC11IoD6TNWmIa4RCkRFOE5GyNXohqUvvjnGnX55xSN2PVxxgBw0lesSOkDhkglJKoxw7lNuWzDNsRpdl_5EF2Z3PvO7bPNfdiXPsQyHHIXBsawCTndsJG32-SKEyfsbf7wOnuqlqvHxex-WfXIKVcExoiN1E62wK3ChhAceWiFGmpP3FhSkoQXhhrdtB4Fdgad7KTnrSMxYXe_u71zbv0Z-52N3-vTHeIHZP9LXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast color/texture segmentation for outdoor robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blas, M.R. ; Agrawal, M. ; Sundaresan, A. ; Konolige, K.</creator><creatorcontrib>Blas, M.R. ; Agrawal, M. ; Sundaresan, A. ; Konolige, K.</creatorcontrib><description>We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424420575</identifier><identifier>ISBN: 1424420571</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424420582</identifier><identifier>EISBN: 142442058X</identifier><identifier>DOI: 10.1109/IROS.2008.4651086</identifier><identifier>LCCN: 2008900186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Filter bank ; Histograms ; Image color analysis ; Image segmentation ; Pixel ; Robots</subject><ispartof>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.4078-4085</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4651086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4651086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blas, M.R.</creatorcontrib><creatorcontrib>Agrawal, M.</creatorcontrib><creatorcontrib>Sundaresan, A.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><title>Fast color/texture segmentation for outdoor robots</title><title>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning.</description><subject>Clustering algorithms</subject><subject>Filter bank</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Pixel</subject><subject>Robots</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424420575</isbn><isbn>1424420571</isbn><isbn>9781424420582</isbn><isbn>142442058X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkNtKAzEUReOlYK3zAeLL_MBMT04uc_IoxWqhUPDyXNKZREbaRpIU9O-dYhHcLwv2gv2wGbvlUHMOZrp4Xr3UCEC11IoD6TNWmIa4RCkRFOE5GyNXohqUvvjnGnX55xSN2PVxxgBw0lesSOkDhkglJKoxw7lNuWzDNsRpdl_5EF2Z3PvO7bPNfdiXPsQyHHIXBsawCTndsJG32-SKEyfsbf7wOnuqlqvHxex-WfXIKVcExoiN1E62wK3ChhAceWiFGmpP3FhSkoQXhhrdtB4Fdgad7KTnrSMxYXe_u71zbv0Z-52N3-vTHeIHZP9LXA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Blas, M.R.</creator><creator>Agrawal, M.</creator><creator>Sundaresan, A.</creator><creator>Konolige, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Fast color/texture segmentation for outdoor robots</title><author>Blas, M.R. ; Agrawal, M. ; Sundaresan, A. ; Konolige, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-80993b46e4c01a527820e8f0c353b4f819a85483f398767cf232d92e4d4f1ce83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clustering algorithms</topic><topic>Filter bank</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Pixel</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Blas, M.R.</creatorcontrib><creatorcontrib>Agrawal, M.</creatorcontrib><creatorcontrib>Sundaresan, A.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blas, M.R.</au><au>Agrawal, M.</au><au>Sundaresan, A.</au><au>Konolige, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast color/texture segmentation for outdoor robots</atitle><btitle>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>4078</spage><epage>4085</epage><pages>4078-4085</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424420575</isbn><isbn>1424420571</isbn><eisbn>9781424420582</eisbn><eisbn>142442058X</eisbn><abstract>We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2008.4651086</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.4078-4085
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_4651086
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Filter bank
Histograms
Image color analysis
Image segmentation
Pixel
Robots
title Fast color/texture segmentation for outdoor robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20color/texture%20segmentation%20for%20outdoor%20robots&rft.btitle=2008%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Blas,%20M.R.&rft.date=2008-01-01&rft.spage=4078&rft.epage=4085&rft.pages=4078-4085&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424420575&rft.isbn_list=1424420571&rft_id=info:doi/10.1109/IROS.2008.4651086&rft_dat=%3Cieee_6IE%3E4651086%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424420582&rft.eisbn_list=142442058X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4651086&rfr_iscdi=true