Fast color/texture segmentation for outdoor robots
We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to per...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4085 |
---|---|
container_issue | |
container_start_page | 4078 |
container_title | |
container_volume | |
creator | Blas, M.R. Agrawal, M. Sundaresan, A. Konolige, K. |
description | We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning. |
doi_str_mv | 10.1109/IROS.2008.4651086 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4651086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4651086</ieee_id><sourcerecordid>4651086</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-80993b46e4c01a527820e8f0c353b4f819a85483f398767cf232d92e4d4f1ce83</originalsourceid><addsrcrecordid>eNpVkNtKAzEUReOlYK3zAeLL_MBMT04uc_IoxWqhUPDyXNKZREbaRpIU9O-dYhHcLwv2gv2wGbvlUHMOZrp4Xr3UCEC11IoD6TNWmIa4RCkRFOE5GyNXohqUvvjnGnX55xSN2PVxxgBw0lesSOkDhkglJKoxw7lNuWzDNsRpdl_5EF2Z3PvO7bPNfdiXPsQyHHIXBsawCTndsJG32-SKEyfsbf7wOnuqlqvHxex-WfXIKVcExoiN1E62wK3ChhAceWiFGmpP3FhSkoQXhhrdtB4Fdgad7KTnrSMxYXe_u71zbv0Z-52N3-vTHeIHZP9LXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast color/texture segmentation for outdoor robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blas, M.R. ; Agrawal, M. ; Sundaresan, A. ; Konolige, K.</creator><creatorcontrib>Blas, M.R. ; Agrawal, M. ; Sundaresan, A. ; Konolige, K.</creatorcontrib><description>We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424420575</identifier><identifier>ISBN: 1424420571</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424420582</identifier><identifier>EISBN: 142442058X</identifier><identifier>DOI: 10.1109/IROS.2008.4651086</identifier><identifier>LCCN: 2008900186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Filter bank ; Histograms ; Image color analysis ; Image segmentation ; Pixel ; Robots</subject><ispartof>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.4078-4085</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4651086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4651086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blas, M.R.</creatorcontrib><creatorcontrib>Agrawal, M.</creatorcontrib><creatorcontrib>Sundaresan, A.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><title>Fast color/texture segmentation for outdoor robots</title><title>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning.</description><subject>Clustering algorithms</subject><subject>Filter bank</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Pixel</subject><subject>Robots</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424420575</isbn><isbn>1424420571</isbn><isbn>9781424420582</isbn><isbn>142442058X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkNtKAzEUReOlYK3zAeLL_MBMT04uc_IoxWqhUPDyXNKZREbaRpIU9O-dYhHcLwv2gv2wGbvlUHMOZrp4Xr3UCEC11IoD6TNWmIa4RCkRFOE5GyNXohqUvvjnGnX55xSN2PVxxgBw0lesSOkDhkglJKoxw7lNuWzDNsRpdl_5EF2Z3PvO7bPNfdiXPsQyHHIXBsawCTndsJG32-SKEyfsbf7wOnuqlqvHxex-WfXIKVcExoiN1E62wK3ChhAceWiFGmpP3FhSkoQXhhrdtB4Fdgad7KTnrSMxYXe_u71zbv0Z-52N3-vTHeIHZP9LXA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Blas, M.R.</creator><creator>Agrawal, M.</creator><creator>Sundaresan, A.</creator><creator>Konolige, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Fast color/texture segmentation for outdoor robots</title><author>Blas, M.R. ; Agrawal, M. ; Sundaresan, A. ; Konolige, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-80993b46e4c01a527820e8f0c353b4f819a85483f398767cf232d92e4d4f1ce83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clustering algorithms</topic><topic>Filter bank</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Pixel</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Blas, M.R.</creatorcontrib><creatorcontrib>Agrawal, M.</creatorcontrib><creatorcontrib>Sundaresan, A.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blas, M.R.</au><au>Agrawal, M.</au><au>Sundaresan, A.</au><au>Konolige, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast color/texture segmentation for outdoor robots</atitle><btitle>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>4078</spage><epage>4085</epage><pages>4078-4085</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424420575</isbn><isbn>1424420571</isbn><eisbn>9781424420582</eisbn><eisbn>142442058X</eisbn><abstract>We present a fast integrated approach for online segmentation of images for outdoor robots. A compact color and texture descriptor has been developed to describe local color and texture variations in an image. This descriptor is then used in a two-stage fast clustering framework using K-means to perform online segmentation of natural images. We present results of applying our descriptor for segmenting a synthetic image and compare it against other state-of-the-art descriptors. We also apply our segmentation algorithm to the task of detecting natural paths in outdoor images. The whole system has been demonstrated to work online alongside localization, 3D obstacle detection, and planning.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2008.4651086</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.4078-4085 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_4651086 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Filter bank Histograms Image color analysis Image segmentation Pixel Robots |
title | Fast color/texture segmentation for outdoor robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20color/texture%20segmentation%20for%20outdoor%20robots&rft.btitle=2008%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Blas,%20M.R.&rft.date=2008-01-01&rft.spage=4078&rft.epage=4085&rft.pages=4078-4085&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424420575&rft.isbn_list=1424420571&rft_id=info:doi/10.1109/IROS.2008.4651086&rft_dat=%3Cieee_6IE%3E4651086%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424420582&rft.eisbn_list=142442058X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4651086&rfr_iscdi=true |