Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes

This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008-01, Vol.2008, p.5871-5875
Hauptverfasser: Matthews, R., Turner, P.J., McDonald, N. J., Ermolaev, K., Manus, T. Mc, Shelby, R.A., Steindorf, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5875
container_issue
container_start_page 5871
container_title 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2008
creator Matthews, R.
Turner, P.J.
McDonald, N. J.
Ermolaev, K.
Manus, T. Mc
Shelby, R.A.
Steindorf, M.
description This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness permits the recording of high quality EEG data during ambulation. Advanced algorithms developed for this system permit real time classification of workload during subject motion. Measurements made using the EEG system during ambulation are presented, including results for real time classification of subject workload.
doi_str_mv 10.1109/IEMBS.2008.4650550
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_4650550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4650550</ieee_id><sourcerecordid>19164053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-9136de6e51effd4a18d8ac8fda177b1c2bbaa0785c3eb321e99496779ad7b8403</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhuMXbsz9AQXJH-jMaZMmudQx52Ai-AHejaQ51Wi7StIx-u8tbgqemwPneXjhPYScA5sAMH21mN3fPE1SxtSE54IJwQ7IWEsFPOUcFIj0kAxBCJXwHMTRP8bFcc-Y5kmu5OuAjGP8YP1wkeWKnZIBaMg5E9mQuEc0FW19jXTbhM-qMY4WlYnRl74wrW_WtAxNTc2amtpuKtM2oaNbH7DCGOlsNqexiy3WdBP9-o2-dzZ493PvjaINjcN4Rk5KU0Uc7_eIvNzOnqd3yfJhvpheL5OCA28TDVnuMEcBWJaOG1BOmUKVzoCUForUWmOYVKLI0GYpoNZc51Jq46RVnGUjcrnL_drYGt3qK_jahG71W7cXLnaCR8Q_vP9v9g2lLWiD</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matthews, R. ; Turner, P.J. ; McDonald, N. J. ; Ermolaev, K. ; Manus, T. Mc ; Shelby, R.A. ; Steindorf, M.</creator><creatorcontrib>Matthews, R. ; Turner, P.J. ; McDonald, N. J. ; Ermolaev, K. ; Manus, T. Mc ; Shelby, R.A. ; Steindorf, M.</creatorcontrib><description>This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness permits the recording of high quality EEG data during ambulation. Advanced algorithms developed for this system permit real time classification of workload during subject motion. Measurements made using the EEG system during ambulation are presented, including results for real time classification of subject workload.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424418145</identifier><identifier>ISBN: 1424418143</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424418152</identifier><identifier>EISBN: 1424418151</identifier><identifier>DOI: 10.1109/IEMBS.2008.4650550</identifier><identifier>PMID: 19164053</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain - physiology ; Electrodes ; Electroencephalography - instrumentation ; Electroencephalography - methods ; Equipment Design ; Equipment Failure Analysis ; Monitoring, Ambulatory - instrumentation ; Monitoring, Ambulatory - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Telemetry - instrumentation ; Workload</subject><ispartof>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008-01, Vol.2008, p.5871-5875</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-9136de6e51effd4a18d8ac8fda177b1c2bbaa0785c3eb321e99496779ad7b8403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4650550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4650550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19164053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthews, R.</creatorcontrib><creatorcontrib>Turner, P.J.</creatorcontrib><creatorcontrib>McDonald, N. J.</creatorcontrib><creatorcontrib>Ermolaev, K.</creatorcontrib><creatorcontrib>Manus, T. Mc</creatorcontrib><creatorcontrib>Shelby, R.A.</creatorcontrib><creatorcontrib>Steindorf, M.</creatorcontrib><title>Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes</title><title>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness permits the recording of high quality EEG data during ambulation. Advanced algorithms developed for this system permit real time classification of workload during subject motion. Measurements made using the EEG system during ambulation are presented, including results for real time classification of subject workload.</description><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Electrodes</subject><subject>Electroencephalography - instrumentation</subject><subject>Electroencephalography - methods</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Monitoring, Ambulatory - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Telemetry - instrumentation</subject><subject>Workload</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424418145</isbn><isbn>1424418143</isbn><isbn>9781424418152</isbn><isbn>1424418151</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpVkF1LwzAUhuMXbsz9AQXJH-jMaZMmudQx52Ai-AHejaQ51Wi7StIx-u8tbgqemwPneXjhPYScA5sAMH21mN3fPE1SxtSE54IJwQ7IWEsFPOUcFIj0kAxBCJXwHMTRP8bFcc-Y5kmu5OuAjGP8YP1wkeWKnZIBaMg5E9mQuEc0FW19jXTbhM-qMY4WlYnRl74wrW_WtAxNTc2amtpuKtM2oaNbH7DCGOlsNqexiy3WdBP9-o2-dzZ493PvjaINjcN4Rk5KU0Uc7_eIvNzOnqd3yfJhvpheL5OCA28TDVnuMEcBWJaOG1BOmUKVzoCUForUWmOYVKLI0GYpoNZc51Jq46RVnGUjcrnL_drYGt3qK_jahG71W7cXLnaCR8Q_vP9v9g2lLWiD</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Matthews, R.</creator><creator>Turner, P.J.</creator><creator>McDonald, N. J.</creator><creator>Ermolaev, K.</creator><creator>Manus, T. Mc</creator><creator>Shelby, R.A.</creator><creator>Steindorf, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20080101</creationdate><title>Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes</title><author>Matthews, R. ; Turner, P.J. ; McDonald, N. J. ; Ermolaev, K. ; Manus, T. Mc ; Shelby, R.A. ; Steindorf, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-9136de6e51effd4a18d8ac8fda177b1c2bbaa0785c3eb321e99496779ad7b8403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Electrodes</topic><topic>Electroencephalography - instrumentation</topic><topic>Electroencephalography - methods</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Monitoring, Ambulatory - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Telemetry - instrumentation</topic><topic>Workload</topic><toplevel>online_resources</toplevel><creatorcontrib>Matthews, R.</creatorcontrib><creatorcontrib>Turner, P.J.</creatorcontrib><creatorcontrib>McDonald, N. J.</creatorcontrib><creatorcontrib>Ermolaev, K.</creatorcontrib><creatorcontrib>Manus, T. Mc</creatorcontrib><creatorcontrib>Shelby, R.A.</creatorcontrib><creatorcontrib>Steindorf, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matthews, R.</au><au>Turner, P.J.</au><au>McDonald, N. J.</au><au>Ermolaev, K.</au><au>Manus, T. Mc</au><au>Shelby, R.A.</au><au>Steindorf, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes</atitle><jtitle>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>2008</volume><spage>5871</spage><epage>5875</epage><pages>5871-5875</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424418145</isbn><isbn>1424418143</isbn><eisbn>9781424418152</eisbn><eisbn>1424418151</eisbn><abstract>This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness permits the recording of high quality EEG data during ambulation. Advanced algorithms developed for this system permit real time classification of workload during subject motion. Measurements made using the EEG system during ambulation are presented, including results for real time classification of subject workload.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19164053</pmid><doi>10.1109/IEMBS.2008.4650550</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008-01, Vol.2008, p.5871-5875
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_4650550
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Brain - physiology
Electrodes
Electroencephalography - instrumentation
Electroencephalography - methods
Equipment Design
Equipment Failure Analysis
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Reproducibility of Results
Sensitivity and Specificity
Telemetry - instrumentation
Workload
title Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20time%20workload%20classification%20from%20an%20ambulatory%20wireless%20EEG%20system%20using%20hybrid%20EEG%20electrodes&rft.jtitle=2008%2030th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Matthews,%20R.&rft.date=2008-01-01&rft.volume=2008&rft.spage=5871&rft.epage=5875&rft.pages=5871-5875&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424418145&rft.isbn_list=1424418143&rft_id=info:doi/10.1109/IEMBS.2008.4650550&rft_dat=%3Cpubmed_6IE%3E19164053%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418152&rft.eisbn_list=1424418151&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19164053&rft_ieee_id=4650550&rfr_iscdi=true