Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs

This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008-01, Vol.2008, p.1013-1016
Hauptverfasser: Krepkovich, Eileen T., Perreault, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1016
container_issue
container_start_page 1013
container_title 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2008
creator Krepkovich, Eileen T.
Perreault, Eric J.
description This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.
doi_str_mv 10.1109/IEMBS.2008.4649327
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_4649327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4649327</ieee_id><sourcerecordid>19162830</sourcerecordid><originalsourceid>FETCH-LOGICAL-i369t-b82e3325f9d269846c0dc59e5c424e3d7834945df3d8da6957eb97aae36b7ffb3</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcc_bKl9AQWZF0id_8wstVQtVLpQwZVlkrnRkWQSkgno2ztgFbybs_g-DpyL0DklC0qJuVqvHm4eF4wQvRBKGM7yAzQ3uaaCCUE1lewQTamUOhOKyqN_TMjjxIgRmdL5ywTNh-GDpBOSK01O0YQaqpjmZIpet130ja2xD90Y8QA1lNG3AVdtjwOMfUKNLd99gKRE6CtbwoC7HpxPYnjDzVhH39WAQxsy-OxqX_qI2zGmvuEMnVS2HmC-zxl6vl09Le-zzfZuvbzeZJ4rE7NCM-Ccyco4powWqiSulAZkmRYBd7nmwgjpKu60s8rIHAqTWwtcFXlVFXyGLn96u7FowO26Po3qv3a_Q5Nw8SN4APjD-8_yb6sSZ3g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krepkovich, Eileen T. ; Perreault, Eric J.</creator><creatorcontrib>Krepkovich, Eileen T. ; Perreault, Eric J.</creatorcontrib><description>This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424418145</identifier><identifier>ISBN: 1424418143</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424418152</identifier><identifier>EISBN: 1424418151</identifier><identifier>DOI: 10.1109/IEMBS.2008.4649327</identifier><identifier>PMID: 19162830</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action Potentials - physiology ; Algorithms ; Artificial Intelligence ; Electromyography - methods ; Muscle Contraction - physiology ; Muscle, Skeletal - physiology ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; User-Computer Interface</subject><ispartof>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008-01, Vol.2008, p.1013-1016</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4649327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4649327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19162830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krepkovich, Eileen T.</creatorcontrib><creatorcontrib>Perreault, Eric J.</creatorcontrib><title>Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs</title><title>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Electromyography - methods</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>User-Computer Interface</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424418145</isbn><isbn>1424418143</isbn><isbn>9781424418152</isbn><isbn>1424418151</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpVkM1Kw0AUhcc_bKl9AQWZF0id_8wstVQtVLpQwZVlkrnRkWQSkgno2ztgFbybs_g-DpyL0DklC0qJuVqvHm4eF4wQvRBKGM7yAzQ3uaaCCUE1lewQTamUOhOKyqN_TMjjxIgRmdL5ywTNh-GDpBOSK01O0YQaqpjmZIpet130ja2xD90Y8QA1lNG3AVdtjwOMfUKNLd99gKRE6CtbwoC7HpxPYnjDzVhH39WAQxsy-OxqX_qI2zGmvuEMnVS2HmC-zxl6vl09Le-zzfZuvbzeZJ4rE7NCM-Ccyco4powWqiSulAZkmRYBd7nmwgjpKu60s8rIHAqTWwtcFXlVFXyGLn96u7FowO26Po3qv3a_Q5Nw8SN4APjD-8_yb6sSZ3g</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Krepkovich, Eileen T.</creator><creator>Perreault, Eric J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20080101</creationdate><title>Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs</title><author>Krepkovich, Eileen T. ; Perreault, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i369t-b82e3325f9d269846c0dc59e5c424e3d7834945df3d8da6957eb97aae36b7ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Electromyography - methods</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>User-Computer Interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Krepkovich, Eileen T.</creatorcontrib><creatorcontrib>Perreault, Eric J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krepkovich, Eileen T.</au><au>Perreault, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs</atitle><jtitle>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>2008</volume><spage>1013</spage><epage>1016</epage><pages>1013-1016</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424418145</isbn><isbn>1424418143</isbn><eisbn>9781424418152</eisbn><eisbn>1424418151</eisbn><abstract>This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19162830</pmid><doi>10.1109/IEMBS.2008.4649327</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008-01, Vol.2008, p.1013-1016
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_4649327
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Action Potentials - physiology
Algorithms
Artificial Intelligence
Electromyography - methods
Muscle Contraction - physiology
Muscle, Skeletal - physiology
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
User-Computer Interface
title Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20input%20selection%20for%20neural%20machine%20interfaces%20predicting%20multiple%20non-explicit%20outputs&rft.jtitle=2008%2030th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Krepkovich,%20Eileen%20T.&rft.date=2008-01-01&rft.volume=2008&rft.spage=1013&rft.epage=1016&rft.pages=1013-1016&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424418145&rft.isbn_list=1424418143&rft_id=info:doi/10.1109/IEMBS.2008.4649327&rft_dat=%3Cpubmed_6IE%3E19162830%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418152&rft.eisbn_list=1424418151&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19162830&rft_ieee_id=4649327&rfr_iscdi=true