Sensor node localization methods based on local observations of distributed natural phenomena
This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | |
container_start_page | 301 |
container_title | |
container_volume | |
creator | Sawo, F. Henderson, T.C. Sikorski, C. Hanebeck, U.D. |
description | This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results. |
doi_str_mv | 10.1109/MFI.2008.4648082 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4648082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648082</ieee_id><sourcerecordid>4648082</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1322-fdb2096f2954d54fb1f7861eadcc136d39c69d2b6c2fa23e9aa7797505d35fda3</originalsourceid><addsrcrecordid>eNo1kE9Lw0AUxFekoK25C172CyS-_ZPd7FGK1ULFg3qUssm-pStJtmRTQT-9sdbDMLyZH-8whFwzKBgDc_u0WhccoCqkkhVU_IxkRldMcik5m3RO5v-HqGZk_ssaAC3MBclS-gAAppUUIC7J-wv2KQ60jw5pGxvbhm87htjTDsdddInWNqGjU3BsaawTDp9HJNHoqQtpHEJ9GCeot-NhmJj9DvvYYW-vyMzbNmF28gV5W92_Lh_zzfPDenm3yQMTnOfe1RyM8tyU0pXS18zrSjG0rmmYUE6YRhnHa9Vwb7lAY63WRpdQOlF6Z8WC3Pz9DYi43Q-hs8PX9jSP-AEiElgf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensor node localization methods based on local observations of distributed natural phenomena</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sawo, F. ; Henderson, T.C. ; Sikorski, C. ; Hanebeck, U.D.</creator><creatorcontrib>Sawo, F. ; Henderson, T.C. ; Sikorski, C. ; Hanebeck, U.D.</creatorcontrib><description>This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results.</description><identifier>ISBN: 1424421438</identifier><identifier>ISBN: 9781424421435</identifier><identifier>EISBN: 9781424421442</identifier><identifier>EISBN: 1424421446</identifier><identifier>DOI: 10.1109/MFI.2008.4648082</identifier><identifier>LCCN: 2008900739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Estimation ; Mathematical model ; Measurement uncertainty ; Polynomials ; Shape ; Uncertainty</subject><ispartof>2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008, p.301-308</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4648082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sawo, F.</creatorcontrib><creatorcontrib>Henderson, T.C.</creatorcontrib><creatorcontrib>Sikorski, C.</creatorcontrib><creatorcontrib>Hanebeck, U.D.</creatorcontrib><title>Sensor node localization methods based on local observations of distributed natural phenomena</title><title>2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems</title><addtitle>MFI</addtitle><description>This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results.</description><subject>Equations</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Measurement uncertainty</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Uncertainty</subject><isbn>1424421438</isbn><isbn>9781424421435</isbn><isbn>9781424421442</isbn><isbn>1424421446</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE9Lw0AUxFekoK25C172CyS-_ZPd7FGK1ULFg3qUssm-pStJtmRTQT-9sdbDMLyZH-8whFwzKBgDc_u0WhccoCqkkhVU_IxkRldMcik5m3RO5v-HqGZk_ssaAC3MBclS-gAAppUUIC7J-wv2KQ60jw5pGxvbhm87htjTDsdddInWNqGjU3BsaawTDp9HJNHoqQtpHEJ9GCeot-NhmJj9DvvYYW-vyMzbNmF28gV5W92_Lh_zzfPDenm3yQMTnOfe1RyM8tyU0pXS18zrSjG0rmmYUE6YRhnHa9Vwb7lAY63WRpdQOlF6Z8WC3Pz9DYi43Q-hs8PX9jSP-AEiElgf</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Sawo, F.</creator><creator>Henderson, T.C.</creator><creator>Sikorski, C.</creator><creator>Hanebeck, U.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Sensor node localization methods based on local observations of distributed natural phenomena</title><author>Sawo, F. ; Henderson, T.C. ; Sikorski, C. ; Hanebeck, U.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1322-fdb2096f2954d54fb1f7861eadcc136d39c69d2b6c2fa23e9aa7797505d35fda3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Equations</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Measurement uncertainty</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Sawo, F.</creatorcontrib><creatorcontrib>Henderson, T.C.</creatorcontrib><creatorcontrib>Sikorski, C.</creatorcontrib><creatorcontrib>Hanebeck, U.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sawo, F.</au><au>Henderson, T.C.</au><au>Sikorski, C.</au><au>Hanebeck, U.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensor node localization methods based on local observations of distributed natural phenomena</atitle><btitle>2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems</btitle><stitle>MFI</stitle><date>2008-08</date><risdate>2008</risdate><spage>301</spage><epage>308</epage><pages>301-308</pages><isbn>1424421438</isbn><isbn>9781424421435</isbn><eisbn>9781424421442</eisbn><eisbn>1424421446</eisbn><abstract>This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results.</abstract><pub>IEEE</pub><doi>10.1109/MFI.2008.4648082</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424421438 |
ispartof | 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008, p.301-308 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4648082 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Equations Estimation Mathematical model Measurement uncertainty Polynomials Shape Uncertainty |
title | Sensor node localization methods based on local observations of distributed natural phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensor%20node%20localization%20methods%20based%20on%20local%20observations%20of%20distributed%20natural%20phenomena&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Multisensor%20Fusion%20and%20Integration%20for%20Intelligent%20Systems&rft.au=Sawo,%20F.&rft.date=2008-08&rft.spage=301&rft.epage=308&rft.pages=301-308&rft.isbn=1424421438&rft.isbn_list=9781424421435&rft_id=info:doi/10.1109/MFI.2008.4648082&rft_dat=%3Cieee_6IE%3E4648082%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421442&rft.eisbn_list=1424421446&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4648082&rfr_iscdi=true |