Sensor node localization methods based on local observations of distributed natural phenomena

This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sawo, F., Henderson, T.C., Sikorski, C., Hanebeck, U.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue
container_start_page 301
container_title
container_volume
creator Sawo, F.
Henderson, T.C.
Sikorski, C.
Hanebeck, U.D.
description This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results.
doi_str_mv 10.1109/MFI.2008.4648082
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4648082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648082</ieee_id><sourcerecordid>4648082</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1322-fdb2096f2954d54fb1f7861eadcc136d39c69d2b6c2fa23e9aa7797505d35fda3</originalsourceid><addsrcrecordid>eNo1kE9Lw0AUxFekoK25C172CyS-_ZPd7FGK1ULFg3qUssm-pStJtmRTQT-9sdbDMLyZH-8whFwzKBgDc_u0WhccoCqkkhVU_IxkRldMcik5m3RO5v-HqGZk_ssaAC3MBclS-gAAppUUIC7J-wv2KQ60jw5pGxvbhm87htjTDsdddInWNqGjU3BsaawTDp9HJNHoqQtpHEJ9GCeot-NhmJj9DvvYYW-vyMzbNmF28gV5W92_Lh_zzfPDenm3yQMTnOfe1RyM8tyU0pXS18zrSjG0rmmYUE6YRhnHa9Vwb7lAY63WRpdQOlF6Z8WC3Pz9DYi43Q-hs8PX9jSP-AEiElgf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensor node localization methods based on local observations of distributed natural phenomena</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sawo, F. ; Henderson, T.C. ; Sikorski, C. ; Hanebeck, U.D.</creator><creatorcontrib>Sawo, F. ; Henderson, T.C. ; Sikorski, C. ; Hanebeck, U.D.</creatorcontrib><description>This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results.</description><identifier>ISBN: 1424421438</identifier><identifier>ISBN: 9781424421435</identifier><identifier>EISBN: 9781424421442</identifier><identifier>EISBN: 1424421446</identifier><identifier>DOI: 10.1109/MFI.2008.4648082</identifier><identifier>LCCN: 2008900739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Estimation ; Mathematical model ; Measurement uncertainty ; Polynomials ; Shape ; Uncertainty</subject><ispartof>2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008, p.301-308</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4648082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sawo, F.</creatorcontrib><creatorcontrib>Henderson, T.C.</creatorcontrib><creatorcontrib>Sikorski, C.</creatorcontrib><creatorcontrib>Hanebeck, U.D.</creatorcontrib><title>Sensor node localization methods based on local observations of distributed natural phenomena</title><title>2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems</title><addtitle>MFI</addtitle><description>This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results.</description><subject>Equations</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Measurement uncertainty</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Uncertainty</subject><isbn>1424421438</isbn><isbn>9781424421435</isbn><isbn>9781424421442</isbn><isbn>1424421446</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE9Lw0AUxFekoK25C172CyS-_ZPd7FGK1ULFg3qUssm-pStJtmRTQT-9sdbDMLyZH-8whFwzKBgDc_u0WhccoCqkkhVU_IxkRldMcik5m3RO5v-HqGZk_ssaAC3MBclS-gAAppUUIC7J-wv2KQ60jw5pGxvbhm87htjTDsdddInWNqGjU3BsaawTDp9HJNHoqQtpHEJ9GCeot-NhmJj9DvvYYW-vyMzbNmF28gV5W92_Lh_zzfPDenm3yQMTnOfe1RyM8tyU0pXS18zrSjG0rmmYUE6YRhnHa9Vwb7lAY63WRpdQOlF6Z8WC3Pz9DYi43Q-hs8PX9jSP-AEiElgf</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Sawo, F.</creator><creator>Henderson, T.C.</creator><creator>Sikorski, C.</creator><creator>Hanebeck, U.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Sensor node localization methods based on local observations of distributed natural phenomena</title><author>Sawo, F. ; Henderson, T.C. ; Sikorski, C. ; Hanebeck, U.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1322-fdb2096f2954d54fb1f7861eadcc136d39c69d2b6c2fa23e9aa7797505d35fda3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Equations</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Measurement uncertainty</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Sawo, F.</creatorcontrib><creatorcontrib>Henderson, T.C.</creatorcontrib><creatorcontrib>Sikorski, C.</creatorcontrib><creatorcontrib>Hanebeck, U.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sawo, F.</au><au>Henderson, T.C.</au><au>Sikorski, C.</au><au>Hanebeck, U.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensor node localization methods based on local observations of distributed natural phenomena</atitle><btitle>2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems</btitle><stitle>MFI</stitle><date>2008-08</date><risdate>2008</risdate><spage>301</spage><epage>308</epage><pages>301-308</pages><isbn>1424421438</isbn><isbn>9781424421435</isbn><eisbn>9781424421442</eisbn><eisbn>1424421446</eisbn><abstract>This paper addresses the model-based localization of sensor networks based on local observations of a distributed phenomenon. For the localization process, we propose the rigorous exploitation of strong mathematical models of distributed phenomena. By unobtrusively exploiting background phenomena, the individual sensor nodes can be localized by only observing its local surrounding without the necessity of heavy infrastructure. In this paper, we introduce two novel approaches: (a) the polynomial system localization method (PSL-method) and (b) the simultaneous reconstruction and localization method (SRL-method). The first approach (PSL-method) is based on restating the mathematical model of the distributed phenomenon in terms of a polynomial system. These equations depend on both the state of the phenomenon and the node locations. Solving the system of polynomials for each individual sensor node directly leads to the desired locations. The second approach (SRL-method) basically regards the localization problem as a simultaneous state and parameter estimation problem with the node locations as parameters. By this means, the distributed phenomenon is reconstructed and the individual nodes are localized in a simultaneous fashion. In addition, within this framework the uncertainties in the mathematical model and the measurements are considered. The performance of the two different localization approaches is demonstrated by means of simulation results.</abstract><pub>IEEE</pub><doi>10.1109/MFI.2008.4648082</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421438
ispartof 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008, p.301-308
issn
language eng
recordid cdi_ieee_primary_4648082
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Estimation
Mathematical model
Measurement uncertainty
Polynomials
Shape
Uncertainty
title Sensor node localization methods based on local observations of distributed natural phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensor%20node%20localization%20methods%20based%20on%20local%20observations%20of%20distributed%20natural%20phenomena&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Multisensor%20Fusion%20and%20Integration%20for%20Intelligent%20Systems&rft.au=Sawo,%20F.&rft.date=2008-08&rft.spage=301&rft.epage=308&rft.pages=301-308&rft.isbn=1424421438&rft.isbn_list=9781424421435&rft_id=info:doi/10.1109/MFI.2008.4648082&rft_dat=%3Cieee_6IE%3E4648082%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421442&rft.eisbn_list=1424421446&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4648082&rfr_iscdi=true