Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing
This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable str...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | |
container_start_page | 405 |
container_title | |
container_volume | |
creator | Leiner, B.J. Lorena, V.Q. Cesar, T.M. Lorenzo, M.V. |
description | This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage. |
doi_str_mv | 10.1109/CERMA.2008.32 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4641105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4641105</ieee_id><sourcerecordid>4641105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bacc9040ecc04e5daed757d7311c7a96a3684433a01dc3649a5104b80f236fcc3</originalsourceid><addsrcrecordid>eNotUMlOwzAUtIQqASVHTlz8Ay3eEtvHqOomFagQnKtX56W4pElku6r4e4LKXEajWQ5DyCNnU86ZfZ7N31_KqWDMTKW4IZnVhunC5lIKZkfk_s-xwghhbkkW45ENyIUW3NyR4wpCdYGAtAzuyyd06TyIugt0sV2WdH3qGzxhmyD5rqVdTYG-4jlAM1C6dOGbQlvRdYq07PvGu2vOt0MTDhjpNnQOY_Tt4YGMamgiZv88Jp-L-cdsNdm8LdezcjPxXOdpsgfnLFMMnWMK8wqw0rmutOTcabAFyMIoJSUwXjlZKAs5Z2pvWC1kUTsnx-TpuusRcdcHf4Lws1OFGs7K5S_z1lhf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Leiner, B.J. ; Lorena, V.Q. ; Cesar, T.M. ; Lorenzo, M.V.</creator><creatorcontrib>Leiner, B.J. ; Lorena, V.Q. ; Cesar, T.M. ; Lorenzo, M.V.</creatorcontrib><description>This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage.</description><identifier>ISBN: 9780769533209</identifier><identifier>ISBN: 0769533205</identifier><identifier>DOI: 10.1109/CERMA.2008.32</identifier><identifier>LCCN: 2008928228</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Associative memory ; Field programmable gate arrays ; Hardware ; Neurons ; Pixel ; Random access memory</subject><ispartof>2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08), 2008, p.405-410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4641105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4641105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leiner, B.J.</creatorcontrib><creatorcontrib>Lorena, V.Q.</creatorcontrib><creatorcontrib>Cesar, T.M.</creatorcontrib><creatorcontrib>Lorenzo, M.V.</creatorcontrib><title>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</title><title>2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)</title><addtitle>CERMA</addtitle><description>This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage.</description><subject>Artificial neural networks</subject><subject>Associative memory</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Neurons</subject><subject>Pixel</subject><subject>Random access memory</subject><isbn>9780769533209</isbn><isbn>0769533205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMlOwzAUtIQqASVHTlz8Ay3eEtvHqOomFagQnKtX56W4pElku6r4e4LKXEajWQ5DyCNnU86ZfZ7N31_KqWDMTKW4IZnVhunC5lIKZkfk_s-xwghhbkkW45ENyIUW3NyR4wpCdYGAtAzuyyd06TyIugt0sV2WdH3qGzxhmyD5rqVdTYG-4jlAM1C6dOGbQlvRdYq07PvGu2vOt0MTDhjpNnQOY_Tt4YGMamgiZv88Jp-L-cdsNdm8LdezcjPxXOdpsgfnLFMMnWMK8wqw0rmutOTcabAFyMIoJSUwXjlZKAs5Z2pvWC1kUTsnx-TpuusRcdcHf4Lws1OFGs7K5S_z1lhf</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Leiner, B.J.</creator><creator>Lorena, V.Q.</creator><creator>Cesar, T.M.</creator><creator>Lorenzo, M.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</title><author>Leiner, B.J. ; Lorena, V.Q. ; Cesar, T.M. ; Lorenzo, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bacc9040ecc04e5daed757d7311c7a96a3684433a01dc3649a5104b80f236fcc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Associative memory</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Neurons</topic><topic>Pixel</topic><topic>Random access memory</topic><toplevel>online_resources</toplevel><creatorcontrib>Leiner, B.J.</creatorcontrib><creatorcontrib>Lorena, V.Q.</creatorcontrib><creatorcontrib>Cesar, T.M.</creatorcontrib><creatorcontrib>Lorenzo, M.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leiner, B.J.</au><au>Lorena, V.Q.</au><au>Cesar, T.M.</au><au>Lorenzo, M.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</atitle><btitle>2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)</btitle><stitle>CERMA</stitle><date>2008-09</date><risdate>2008</risdate><spage>405</spage><epage>410</epage><pages>405-410</pages><isbn>9780769533209</isbn><isbn>0769533205</isbn><abstract>This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage.</abstract><pub>IEEE</pub><doi>10.1109/CERMA.2008.32</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769533209 |
ispartof | 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08), 2008, p.405-410 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4641105 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Associative memory Field programmable gate arrays Hardware Neurons Pixel Random access memory |
title | Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hardware%20Architecture%20for%20FPGA%20Implementation%20of%20a%20Neural%20Network%20and%20Its%20Application%20in%20Images%20Processing&rft.btitle=2008%20Electronics,%20Robotics%20and%20Automotive%20Mechanics%20Conference%20(CERMA%20'08)&rft.au=Leiner,%20B.J.&rft.date=2008-09&rft.spage=405&rft.epage=410&rft.pages=405-410&rft.isbn=9780769533209&rft.isbn_list=0769533205&rft_id=info:doi/10.1109/CERMA.2008.32&rft_dat=%3Cieee_6IE%3E4641105%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4641105&rfr_iscdi=true |