Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing

This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leiner, B.J., Lorena, V.Q., Cesar, T.M., Lorenzo, M.V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue
container_start_page 405
container_title
container_volume
creator Leiner, B.J.
Lorena, V.Q.
Cesar, T.M.
Lorenzo, M.V.
description This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage.
doi_str_mv 10.1109/CERMA.2008.32
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4641105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4641105</ieee_id><sourcerecordid>4641105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bacc9040ecc04e5daed757d7311c7a96a3684433a01dc3649a5104b80f236fcc3</originalsourceid><addsrcrecordid>eNotUMlOwzAUtIQqASVHTlz8Ay3eEtvHqOomFagQnKtX56W4pElku6r4e4LKXEajWQ5DyCNnU86ZfZ7N31_KqWDMTKW4IZnVhunC5lIKZkfk_s-xwghhbkkW45ENyIUW3NyR4wpCdYGAtAzuyyd06TyIugt0sV2WdH3qGzxhmyD5rqVdTYG-4jlAM1C6dOGbQlvRdYq07PvGu2vOt0MTDhjpNnQOY_Tt4YGMamgiZv88Jp-L-cdsNdm8LdezcjPxXOdpsgfnLFMMnWMK8wqw0rmutOTcabAFyMIoJSUwXjlZKAs5Z2pvWC1kUTsnx-TpuusRcdcHf4Lws1OFGs7K5S_z1lhf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Leiner, B.J. ; Lorena, V.Q. ; Cesar, T.M. ; Lorenzo, M.V.</creator><creatorcontrib>Leiner, B.J. ; Lorena, V.Q. ; Cesar, T.M. ; Lorenzo, M.V.</creatorcontrib><description>This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage.</description><identifier>ISBN: 9780769533209</identifier><identifier>ISBN: 0769533205</identifier><identifier>DOI: 10.1109/CERMA.2008.32</identifier><identifier>LCCN: 2008928228</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Associative memory ; Field programmable gate arrays ; Hardware ; Neurons ; Pixel ; Random access memory</subject><ispartof>2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08), 2008, p.405-410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4641105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4641105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leiner, B.J.</creatorcontrib><creatorcontrib>Lorena, V.Q.</creatorcontrib><creatorcontrib>Cesar, T.M.</creatorcontrib><creatorcontrib>Lorenzo, M.V.</creatorcontrib><title>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</title><title>2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)</title><addtitle>CERMA</addtitle><description>This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage.</description><subject>Artificial neural networks</subject><subject>Associative memory</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Neurons</subject><subject>Pixel</subject><subject>Random access memory</subject><isbn>9780769533209</isbn><isbn>0769533205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMlOwzAUtIQqASVHTlz8Ay3eEtvHqOomFagQnKtX56W4pElku6r4e4LKXEajWQ5DyCNnU86ZfZ7N31_KqWDMTKW4IZnVhunC5lIKZkfk_s-xwghhbkkW45ENyIUW3NyR4wpCdYGAtAzuyyd06TyIugt0sV2WdH3qGzxhmyD5rqVdTYG-4jlAM1C6dOGbQlvRdYq07PvGu2vOt0MTDhjpNnQOY_Tt4YGMamgiZv88Jp-L-cdsNdm8LdezcjPxXOdpsgfnLFMMnWMK8wqw0rmutOTcabAFyMIoJSUwXjlZKAs5Z2pvWC1kUTsnx-TpuusRcdcHf4Lws1OFGs7K5S_z1lhf</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Leiner, B.J.</creator><creator>Lorena, V.Q.</creator><creator>Cesar, T.M.</creator><creator>Lorenzo, M.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</title><author>Leiner, B.J. ; Lorena, V.Q. ; Cesar, T.M. ; Lorenzo, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bacc9040ecc04e5daed757d7311c7a96a3684433a01dc3649a5104b80f236fcc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Associative memory</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Neurons</topic><topic>Pixel</topic><topic>Random access memory</topic><toplevel>online_resources</toplevel><creatorcontrib>Leiner, B.J.</creatorcontrib><creatorcontrib>Lorena, V.Q.</creatorcontrib><creatorcontrib>Cesar, T.M.</creatorcontrib><creatorcontrib>Lorenzo, M.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leiner, B.J.</au><au>Lorena, V.Q.</au><au>Cesar, T.M.</au><au>Lorenzo, M.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing</atitle><btitle>2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)</btitle><stitle>CERMA</stitle><date>2008-09</date><risdate>2008</risdate><spage>405</spage><epage>410</epage><pages>405-410</pages><isbn>9780769533209</isbn><isbn>0769533205</isbn><abstract>This work describes a hardware architecture implementation of an associative memory neural network (AMNN) using reconfigurable hardware devices such as FPGA (field programmable gates arrays) and its applications in image pattern recognition systems. An associative memory is a content-addressable structure that maps specific input representations to specific output representations. It is a system that "associates" two patterns (X, Y) such that when one is encountered, the other can be recalled. In the design, learning and recognizing algorithms for the neural network are implemented by using VHSIC Hardware Description Language. FPGA is used for implementation because they can reduce development time greatly, ease of fast reprogramming, low price, flexible architecture and permitting fast and non expensive implementation of the whole system. The architecture was evaluated as image recognizing system. Likewise, it was necessary to implement and acquisition stage.</abstract><pub>IEEE</pub><doi>10.1109/CERMA.2008.32</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769533209
ispartof 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08), 2008, p.405-410
issn
language eng
recordid cdi_ieee_primary_4641105
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Associative memory
Field programmable gate arrays
Hardware
Neurons
Pixel
Random access memory
title Hardware Architecture for FPGA Implementation of a Neural Network and Its Application in Images Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hardware%20Architecture%20for%20FPGA%20Implementation%20of%20a%20Neural%20Network%20and%20Its%20Application%20in%20Images%20Processing&rft.btitle=2008%20Electronics,%20Robotics%20and%20Automotive%20Mechanics%20Conference%20(CERMA%20'08)&rft.au=Leiner,%20B.J.&rft.date=2008-09&rft.spage=405&rft.epage=410&rft.pages=405-410&rft.isbn=9780769533209&rft.isbn_list=0769533205&rft_id=info:doi/10.1109/CERMA.2008.32&rft_dat=%3Cieee_6IE%3E4641105%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4641105&rfr_iscdi=true