Modeling unsupervised perceptual category learning

During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lake, B.M., Vallabha, G.K., McClelland, J.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 25
container_title
container_volume
creator Lake, B.M.
Vallabha, G.K.
McClelland, J.L.
description During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task.
doi_str_mv 10.1109/DEVLRN.2008.4640800
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4640800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4640800</ieee_id><sourcerecordid>4640800</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7fd23c89862b495f5e90ad212ce54df7ce75db2bb76a2025afc0d76eb1d4642d3</originalsourceid><addsrcrecordid>eNpVUMtKw1AUvCoFa80XdJMfSDzn5D6XUmsVooKo23KTe1IiMQ15CP17K3bjagbmATNCLBFSRHA3d-uP_PU5JQCbSi3BApyJyBmLkqQkrQnPxZxQY-Kk0Rf_NJQzcfUbdaAyUpciGoZPAMjQWutwLuhpH7ip2108tcPUcf9dDxziIym5GyffxKUfebfvD3HDvm-Pzmsxq3wzcHTChXi_X7-tHpL8ZfO4us2TGo0aE1MFykrrrKZCOlUpduADIZWsZKhMyUaFgorCaE9AylclBKO5wHCcSSFbiOVfb83M266vv3x_2J4uyH4AZkNLtQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling unsupervised perceptual category learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lake, B.M. ; Vallabha, G.K. ; McClelland, J.L.</creator><creatorcontrib>Lake, B.M. ; Vallabha, G.K. ; McClelland, J.L.</creatorcontrib><description>During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task.</description><identifier>ISBN: 9781424426614</identifier><identifier>ISBN: 1424426618</identifier><identifier>EISSN: 2161-9476</identifier><identifier>EISBN: 9781424426621</identifier><identifier>EISBN: 1424426626</identifier><identifier>DOI: 10.1109/DEVLRN.2008.4640800</identifier><identifier>LCCN: 2008905325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bars ; Distance measurement ; Histograms ; Mathematical model ; Pediatrics ; Speech ; Training</subject><ispartof>2008 7th IEEE International Conference on Development and Learning, 2008, p.25-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4640800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4640800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lake, B.M.</creatorcontrib><creatorcontrib>Vallabha, G.K.</creatorcontrib><creatorcontrib>McClelland, J.L.</creatorcontrib><title>Modeling unsupervised perceptual category learning</title><title>2008 7th IEEE International Conference on Development and Learning</title><addtitle>DEVLRN</addtitle><description>During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task.</description><subject>Bars</subject><subject>Distance measurement</subject><subject>Histograms</subject><subject>Mathematical model</subject><subject>Pediatrics</subject><subject>Speech</subject><subject>Training</subject><issn>2161-9476</issn><isbn>9781424426614</isbn><isbn>1424426618</isbn><isbn>9781424426621</isbn><isbn>1424426626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtKw1AUvCoFa80XdJMfSDzn5D6XUmsVooKo23KTe1IiMQ15CP17K3bjagbmATNCLBFSRHA3d-uP_PU5JQCbSi3BApyJyBmLkqQkrQnPxZxQY-Kk0Rf_NJQzcfUbdaAyUpciGoZPAMjQWutwLuhpH7ip2108tcPUcf9dDxziIym5GyffxKUfebfvD3HDvm-Pzmsxq3wzcHTChXi_X7-tHpL8ZfO4us2TGo0aE1MFykrrrKZCOlUpduADIZWsZKhMyUaFgorCaE9AylclBKO5wHCcSSFbiOVfb83M266vv3x_2J4uyH4AZkNLtQ</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Lake, B.M.</creator><creator>Vallabha, G.K.</creator><creator>McClelland, J.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Modeling unsupervised perceptual category learning</title><author>Lake, B.M. ; Vallabha, G.K. ; McClelland, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7fd23c89862b495f5e90ad212ce54df7ce75db2bb76a2025afc0d76eb1d4642d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bars</topic><topic>Distance measurement</topic><topic>Histograms</topic><topic>Mathematical model</topic><topic>Pediatrics</topic><topic>Speech</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Lake, B.M.</creatorcontrib><creatorcontrib>Vallabha, G.K.</creatorcontrib><creatorcontrib>McClelland, J.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lake, B.M.</au><au>Vallabha, G.K.</au><au>McClelland, J.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling unsupervised perceptual category learning</atitle><btitle>2008 7th IEEE International Conference on Development and Learning</btitle><stitle>DEVLRN</stitle><date>2008-08</date><risdate>2008</risdate><spage>25</spage><epage>30</epage><pages>25-30</pages><eissn>2161-9476</eissn><isbn>9781424426614</isbn><isbn>1424426618</isbn><eisbn>9781424426621</eisbn><eisbn>1424426626</eisbn><abstract>During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task.</abstract><pub>IEEE</pub><doi>10.1109/DEVLRN.2008.4640800</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424426614
ispartof 2008 7th IEEE International Conference on Development and Learning, 2008, p.25-30
issn 2161-9476
language eng
recordid cdi_ieee_primary_4640800
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bars
Distance measurement
Histograms
Mathematical model
Pediatrics
Speech
Training
title Modeling unsupervised perceptual category learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20unsupervised%20perceptual%20category%20learning&rft.btitle=2008%207th%20IEEE%20International%20Conference%20on%20Development%20and%20Learning&rft.au=Lake,%20B.M.&rft.date=2008-08&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.eissn=2161-9476&rft.isbn=9781424426614&rft.isbn_list=1424426618&rft_id=info:doi/10.1109/DEVLRN.2008.4640800&rft_dat=%3Cieee_6IE%3E4640800%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424426621&rft.eisbn_list=1424426626&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4640800&rfr_iscdi=true