Modeling unsupervised perceptual category learning
During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Est...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | |
container_volume | |
creator | Lake, B.M. Vallabha, G.K. McClelland, J.L. |
description | During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task. |
doi_str_mv | 10.1109/DEVLRN.2008.4640800 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4640800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4640800</ieee_id><sourcerecordid>4640800</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7fd23c89862b495f5e90ad212ce54df7ce75db2bb76a2025afc0d76eb1d4642d3</originalsourceid><addsrcrecordid>eNpVUMtKw1AUvCoFa80XdJMfSDzn5D6XUmsVooKo23KTe1IiMQ15CP17K3bjagbmATNCLBFSRHA3d-uP_PU5JQCbSi3BApyJyBmLkqQkrQnPxZxQY-Kk0Rf_NJQzcfUbdaAyUpciGoZPAMjQWutwLuhpH7ip2108tcPUcf9dDxziIym5GyffxKUfebfvD3HDvm-Pzmsxq3wzcHTChXi_X7-tHpL8ZfO4us2TGo0aE1MFykrrrKZCOlUpduADIZWsZKhMyUaFgorCaE9AylclBKO5wHCcSSFbiOVfb83M266vv3x_2J4uyH4AZkNLtQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling unsupervised perceptual category learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lake, B.M. ; Vallabha, G.K. ; McClelland, J.L.</creator><creatorcontrib>Lake, B.M. ; Vallabha, G.K. ; McClelland, J.L.</creatorcontrib><description>During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task.</description><identifier>ISBN: 9781424426614</identifier><identifier>ISBN: 1424426618</identifier><identifier>EISSN: 2161-9476</identifier><identifier>EISBN: 9781424426621</identifier><identifier>EISBN: 1424426626</identifier><identifier>DOI: 10.1109/DEVLRN.2008.4640800</identifier><identifier>LCCN: 2008905325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bars ; Distance measurement ; Histograms ; Mathematical model ; Pediatrics ; Speech ; Training</subject><ispartof>2008 7th IEEE International Conference on Development and Learning, 2008, p.25-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4640800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4640800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lake, B.M.</creatorcontrib><creatorcontrib>Vallabha, G.K.</creatorcontrib><creatorcontrib>McClelland, J.L.</creatorcontrib><title>Modeling unsupervised perceptual category learning</title><title>2008 7th IEEE International Conference on Development and Learning</title><addtitle>DEVLRN</addtitle><description>During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task.</description><subject>Bars</subject><subject>Distance measurement</subject><subject>Histograms</subject><subject>Mathematical model</subject><subject>Pediatrics</subject><subject>Speech</subject><subject>Training</subject><issn>2161-9476</issn><isbn>9781424426614</isbn><isbn>1424426618</isbn><isbn>9781424426621</isbn><isbn>1424426626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtKw1AUvCoFa80XdJMfSDzn5D6XUmsVooKo23KTe1IiMQ15CP17K3bjagbmATNCLBFSRHA3d-uP_PU5JQCbSi3BApyJyBmLkqQkrQnPxZxQY-Kk0Rf_NJQzcfUbdaAyUpciGoZPAMjQWutwLuhpH7ip2108tcPUcf9dDxziIym5GyffxKUfebfvD3HDvm-Pzmsxq3wzcHTChXi_X7-tHpL8ZfO4us2TGo0aE1MFykrrrKZCOlUpduADIZWsZKhMyUaFgorCaE9AylclBKO5wHCcSSFbiOVfb83M266vv3x_2J4uyH4AZkNLtQ</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Lake, B.M.</creator><creator>Vallabha, G.K.</creator><creator>McClelland, J.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Modeling unsupervised perceptual category learning</title><author>Lake, B.M. ; Vallabha, G.K. ; McClelland, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7fd23c89862b495f5e90ad212ce54df7ce75db2bb76a2025afc0d76eb1d4642d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bars</topic><topic>Distance measurement</topic><topic>Histograms</topic><topic>Mathematical model</topic><topic>Pediatrics</topic><topic>Speech</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Lake, B.M.</creatorcontrib><creatorcontrib>Vallabha, G.K.</creatorcontrib><creatorcontrib>McClelland, J.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lake, B.M.</au><au>Vallabha, G.K.</au><au>McClelland, J.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling unsupervised perceptual category learning</atitle><btitle>2008 7th IEEE International Conference on Development and Learning</btitle><stitle>DEVLRN</stitle><date>2008-08</date><risdate>2008</risdate><spage>25</spage><epage>30</epage><pages>25-30</pages><eissn>2161-9476</eissn><isbn>9781424426614</isbn><isbn>1424426618</isbn><eisbn>9781424426621</eisbn><eisbn>1424426626</eisbn><abstract>During the learning of speech sounds and other perceptual categories, category labels are not provided, the number of categories is unknown, and the stimuli are encountered sequentially. These constraints provide a challenge for models, but they have been recently addressed in the Online Mixture Estimation model of unsupervised vowel category learning. The model treats categories as Gaussian distributions, proposing both the number and parameters of the categories. While the model has been shown to successfully learn vowel categories, it has not been evaluated as a model of the learning process. We account for three results regarding the learning process: infantspsila discrimination of speech sounds is better after exposure to a bimodal rather than unimodal distribution, infantspsila discrimination of vowels is affected by acoustic distance, and subjects place category centers near frequent stimuli in an unsupervised visual classification task.</abstract><pub>IEEE</pub><doi>10.1109/DEVLRN.2008.4640800</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424426614 |
ispartof | 2008 7th IEEE International Conference on Development and Learning, 2008, p.25-30 |
issn | 2161-9476 |
language | eng |
recordid | cdi_ieee_primary_4640800 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bars Distance measurement Histograms Mathematical model Pediatrics Speech Training |
title | Modeling unsupervised perceptual category learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20unsupervised%20perceptual%20category%20learning&rft.btitle=2008%207th%20IEEE%20International%20Conference%20on%20Development%20and%20Learning&rft.au=Lake,%20B.M.&rft.date=2008-08&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.eissn=2161-9476&rft.isbn=9781424426614&rft.isbn_list=1424426618&rft_id=info:doi/10.1109/DEVLRN.2008.4640800&rft_dat=%3Cieee_6IE%3E4640800%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424426621&rft.eisbn_list=1424426626&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4640800&rfr_iscdi=true |