A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators

Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2008-10, Vol.13 (5), p.519-529
Hauptverfasser: Zheng Chen, Zheng Chen, Xiaobo Tan, Xiaobo Tan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 5
container_start_page 519
container_title IEEE/ASME transactions on mechatronics
container_volume 13
creator Zheng Chen, Zheng Chen
Xiaobo Tan, Xiaobo Tan
description Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design.
doi_str_mv 10.1109/TMECH.2008.920021
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4639594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4639594</ieee_id><sourcerecordid>34473074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhiMEEqXwAxBLxACTy50_kmYsUaFIVDCAYLPc5CxSpXGx06H_HpciBgaW-9Jzr-70Jsk5wggRipuX-bScjTjAeFTEyPEgGWAhkQHK98NYw1gwKYU6Tk5CWAKARMBB8jZJS9f13rXsyTfU9VSnpqvT549taKrAbk2Ik7mrqU2t8-mD65oqfXbtdkWesTn1po0Kq7ULTU_ppOo3pnc-nCZH1rSBzn7yMHm9m76UM_b4dP9QTh5ZJTn2zFiOnEQNCLlUaiFJqUqp2Fuqcyq4UgILELRACzIjQrvIarQVGCFsZsUwud7rrr373FDo9aoJFbWt6chtgh7nCgrIMY_k1b-kkDIX8YoIXv4Bl27ju_iFHmecK8GlihDuocq7EDxZvfbNyvitRtA7R_S3I3rniN47Encu9jsNEf3yMhOFKqT4Amczhfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862253245</pqid></control><display><type>article</type><title>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng Chen, Zheng Chen ; Xiaobo Tan, Xiaobo Tan</creator><creatorcontrib>Zheng Chen, Zheng Chen ; Xiaobo Tan, Xiaobo Tan</creatorcontrib><description>Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2008.920021</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Actuators ; Biomimetics ; Control design ; Devices ; Electric potential ; Electroactive polymers ; ionic polymer--metal composite (IPMC) actuators ; Mechatronics ; model-based control design ; Nanomaterials ; Nanoscale devices ; Nanostructure ; physics-based model ; Polymers ; Reduced order systems ; Robots ; Surface resistance ; Transfer functions ; Voltage</subject><ispartof>IEEE/ASME transactions on mechatronics, 2008-10, Vol.13 (5), p.519-529</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</citedby><cites>FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4639594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4639594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng Chen, Zheng Chen</creatorcontrib><creatorcontrib>Xiaobo Tan, Xiaobo Tan</creatorcontrib><title>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Biomimetics</subject><subject>Control design</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electroactive polymers</subject><subject>ionic polymer--metal composite (IPMC) actuators</subject><subject>Mechatronics</subject><subject>model-based control design</subject><subject>Nanomaterials</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>physics-based model</subject><subject>Polymers</subject><subject>Reduced order systems</subject><subject>Robots</subject><subject>Surface resistance</subject><subject>Transfer functions</subject><subject>Voltage</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1PwzAQhiMEEqXwAxBLxACTy50_kmYsUaFIVDCAYLPc5CxSpXGx06H_HpciBgaW-9Jzr-70Jsk5wggRipuX-bScjTjAeFTEyPEgGWAhkQHK98NYw1gwKYU6Tk5CWAKARMBB8jZJS9f13rXsyTfU9VSnpqvT549taKrAbk2Ik7mrqU2t8-mD65oqfXbtdkWesTn1po0Kq7ULTU_ppOo3pnc-nCZH1rSBzn7yMHm9m76UM_b4dP9QTh5ZJTn2zFiOnEQNCLlUaiFJqUqp2Fuqcyq4UgILELRACzIjQrvIarQVGCFsZsUwud7rrr373FDo9aoJFbWt6chtgh7nCgrIMY_k1b-kkDIX8YoIXv4Bl27ju_iFHmecK8GlihDuocq7EDxZvfbNyvitRtA7R_S3I3rniN47Encu9jsNEf3yMhOFKqT4Amczhfo</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Zheng Chen, Zheng Chen</creator><creator>Xiaobo Tan, Xiaobo Tan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20081001</creationdate><title>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</title><author>Zheng Chen, Zheng Chen ; Xiaobo Tan, Xiaobo Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Biomimetics</topic><topic>Control design</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electroactive polymers</topic><topic>ionic polymer--metal composite (IPMC) actuators</topic><topic>Mechatronics</topic><topic>model-based control design</topic><topic>Nanomaterials</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>physics-based model</topic><topic>Polymers</topic><topic>Reduced order systems</topic><topic>Robots</topic><topic>Surface resistance</topic><topic>Transfer functions</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng Chen, Zheng Chen</creatorcontrib><creatorcontrib>Xiaobo Tan, Xiaobo Tan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng Chen, Zheng Chen</au><au>Xiaobo Tan, Xiaobo Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>13</volume><issue>5</issue><spage>519</spage><epage>529</epage><pages>519-529</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2008.920021</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2008-10, Vol.13 (5), p.519-529
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_4639594
source IEEE Electronic Library (IEL)
subjects Actuation
Actuators
Biomimetics
Control design
Devices
Electric potential
Electroactive polymers
ionic polymer--metal composite (IPMC) actuators
Mechatronics
model-based control design
Nanomaterials
Nanoscale devices
Nanostructure
physics-based model
Polymers
Reduced order systems
Robots
Surface resistance
Transfer functions
Voltage
title A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Control-Oriented%20and%20Physics-Based%20Model%20for%20Ionic%20Polymer--Metal%20Composite%20Actuators&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zheng%20Chen,%20Zheng%20Chen&rft.date=2008-10-01&rft.volume=13&rft.issue=5&rft.spage=519&rft.epage=529&rft.pages=519-529&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2008.920021&rft_dat=%3Cproquest_RIE%3E34473074%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862253245&rft_id=info:pmid/&rft_ieee_id=4639594&rfr_iscdi=true