A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators
Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2008-10, Vol.13 (5), p.519-529 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | 5 |
container_start_page | 519 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 13 |
creator | Zheng Chen, Zheng Chen Xiaobo Tan, Xiaobo Tan |
description | Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design. |
doi_str_mv | 10.1109/TMECH.2008.920021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4639594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4639594</ieee_id><sourcerecordid>34473074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhiMEEqXwAxBLxACTy50_kmYsUaFIVDCAYLPc5CxSpXGx06H_HpciBgaW-9Jzr-70Jsk5wggRipuX-bScjTjAeFTEyPEgGWAhkQHK98NYw1gwKYU6Tk5CWAKARMBB8jZJS9f13rXsyTfU9VSnpqvT549taKrAbk2Ik7mrqU2t8-mD65oqfXbtdkWesTn1po0Kq7ULTU_ppOo3pnc-nCZH1rSBzn7yMHm9m76UM_b4dP9QTh5ZJTn2zFiOnEQNCLlUaiFJqUqp2Fuqcyq4UgILELRACzIjQrvIarQVGCFsZsUwud7rrr373FDo9aoJFbWt6chtgh7nCgrIMY_k1b-kkDIX8YoIXv4Bl27ju_iFHmecK8GlihDuocq7EDxZvfbNyvitRtA7R_S3I3rniN47Encu9jsNEf3yMhOFKqT4Amczhfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862253245</pqid></control><display><type>article</type><title>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng Chen, Zheng Chen ; Xiaobo Tan, Xiaobo Tan</creator><creatorcontrib>Zheng Chen, Zheng Chen ; Xiaobo Tan, Xiaobo Tan</creatorcontrib><description>Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2008.920021</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Actuators ; Biomimetics ; Control design ; Devices ; Electric potential ; Electroactive polymers ; ionic polymer--metal composite (IPMC) actuators ; Mechatronics ; model-based control design ; Nanomaterials ; Nanoscale devices ; Nanostructure ; physics-based model ; Polymers ; Reduced order systems ; Robots ; Surface resistance ; Transfer functions ; Voltage</subject><ispartof>IEEE/ASME transactions on mechatronics, 2008-10, Vol.13 (5), p.519-529</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</citedby><cites>FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4639594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4639594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng Chen, Zheng Chen</creatorcontrib><creatorcontrib>Xiaobo Tan, Xiaobo Tan</creatorcontrib><title>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Biomimetics</subject><subject>Control design</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electroactive polymers</subject><subject>ionic polymer--metal composite (IPMC) actuators</subject><subject>Mechatronics</subject><subject>model-based control design</subject><subject>Nanomaterials</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>physics-based model</subject><subject>Polymers</subject><subject>Reduced order systems</subject><subject>Robots</subject><subject>Surface resistance</subject><subject>Transfer functions</subject><subject>Voltage</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1PwzAQhiMEEqXwAxBLxACTy50_kmYsUaFIVDCAYLPc5CxSpXGx06H_HpciBgaW-9Jzr-70Jsk5wggRipuX-bScjTjAeFTEyPEgGWAhkQHK98NYw1gwKYU6Tk5CWAKARMBB8jZJS9f13rXsyTfU9VSnpqvT549taKrAbk2Ik7mrqU2t8-mD65oqfXbtdkWesTn1po0Kq7ULTU_ppOo3pnc-nCZH1rSBzn7yMHm9m76UM_b4dP9QTh5ZJTn2zFiOnEQNCLlUaiFJqUqp2Fuqcyq4UgILELRACzIjQrvIarQVGCFsZsUwud7rrr373FDo9aoJFbWt6chtgh7nCgrIMY_k1b-kkDIX8YoIXv4Bl27ju_iFHmecK8GlihDuocq7EDxZvfbNyvitRtA7R_S3I3rniN47Encu9jsNEf3yMhOFKqT4Amczhfo</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Zheng Chen, Zheng Chen</creator><creator>Xiaobo Tan, Xiaobo Tan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20081001</creationdate><title>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</title><author>Zheng Chen, Zheng Chen ; Xiaobo Tan, Xiaobo Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-af212e3d0107455b4e55c55d01fed7e925531903eb1f046ee1fb6d1fc0a33f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Biomimetics</topic><topic>Control design</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electroactive polymers</topic><topic>ionic polymer--metal composite (IPMC) actuators</topic><topic>Mechatronics</topic><topic>model-based control design</topic><topic>Nanomaterials</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>physics-based model</topic><topic>Polymers</topic><topic>Reduced order systems</topic><topic>Robots</topic><topic>Surface resistance</topic><topic>Transfer functions</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng Chen, Zheng Chen</creatorcontrib><creatorcontrib>Xiaobo Tan, Xiaobo Tan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng Chen, Zheng Chen</au><au>Xiaobo Tan, Xiaobo Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>13</volume><issue>5</issue><spage>519</spage><epage>529</epage><pages>519-529</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical devices, and micro/nanomanipulation. In this paper, a physics- based model is developed for IPMC actuators, which is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing partial differential equation in the Laplace domain for the actuation dynamics, where the effect of the distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters and actuator dimensions, and is thus, geometrically scalable. To illustrate the utility of the model in controller design, an H infin controller is designed based on the reduced model and applied to tracking control. Experimental results are presented to validate the proposed model and its effectiveness in real-time control design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2008.920021</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2008-10, Vol.13 (5), p.519-529 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_4639594 |
source | IEEE Electronic Library (IEL) |
subjects | Actuation Actuators Biomimetics Control design Devices Electric potential Electroactive polymers ionic polymer--metal composite (IPMC) actuators Mechatronics model-based control design Nanomaterials Nanoscale devices Nanostructure physics-based model Polymers Reduced order systems Robots Surface resistance Transfer functions Voltage |
title | A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Control-Oriented%20and%20Physics-Based%20Model%20for%20Ionic%20Polymer--Metal%20Composite%20Actuators&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zheng%20Chen,%20Zheng%20Chen&rft.date=2008-10-01&rft.volume=13&rft.issue=5&rft.spage=519&rft.epage=529&rft.pages=519-529&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2008.920021&rft_dat=%3Cproquest_RIE%3E34473074%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862253245&rft_id=info:pmid/&rft_ieee_id=4639594&rfr_iscdi=true |