Spatial Clustering with Obstacles Constraints by HPSO based on Grid

Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xueping Zhang, Weidong Chen, Gaofeng Deng, Zhongshan Fan, Mingwei Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue
container_start_page 1048
container_title
container_volume
creator Xueping Zhang
Weidong Chen
Gaofeng Deng
Zhongshan Fan
Mingwei Wang
description Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC).
doi_str_mv 10.1109/ICAL.2008.4636306
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4636306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4636306</ieee_id><sourcerecordid>4636306</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bdd9712ed79b856fcd894b16ab6237cf73aa144deb8bae4222b43644bbf2f56b3</originalsourceid><addsrcrecordid>eNo9kMtKAzEYheOlYFvnAcRNXmDGXP4kk6UM2gqFClVwV_I3GY2M0zKJSN9ei9WzOYsPPjiHkCvOKs6ZvXlobheVYKyuQEstmT4hEw4CQCgm4ZSMBde8rLl-OSOFNfUfE-z8nyk-IpODwzJpLFyQIqV39hNQUlk5Js1q53J0HW26z5TDEPtX-hXzG11iym7ThUSbbZ_y4GKfE8U9nT-ulhRdCp5uezobor8ko9Z1KRTHnpLn-7unZl4ulrPDiDJyo3KJ3lvDRfDGYq10u_G1BeTaoRbSbFojneMAPmCNLoAQAkFqAMRWtEqjnJLrX28MIax3Q_xww359PEd-A2OFUT4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xueping Zhang ; Weidong Chen ; Gaofeng Deng ; Zhongshan Fan ; Mingwei Wang</creator><creatorcontrib>Xueping Zhang ; Weidong Chen ; Gaofeng Deng ; Zhongshan Fan ; Mingwei Wang</creatorcontrib><description>Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC).</description><identifier>ISSN: 2161-8151</identifier><identifier>ISBN: 9781424425020</identifier><identifier>ISBN: 1424425026</identifier><identifier>EISSN: 2161-816X</identifier><identifier>EISBN: 1424425034</identifier><identifier>EISBN: 9781424425037</identifier><identifier>DOI: 10.1109/ICAL.2008.4636306</identifier><identifier>LCCN: 2008903794</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Distance measurement ; Equations ; Gallium ; Grid ; Hybrid Particle Swarm Optimization ; Mathematical model ; Obstacles Constraints ; Obstructed Distance ; Partitioning algorithms ; Spatial clustering ; Spatial databases</subject><ispartof>2008 IEEE International Conference on Automation and Logistics, 2008, p.1048-1053</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4636306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4636306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xueping Zhang</creatorcontrib><creatorcontrib>Weidong Chen</creatorcontrib><creatorcontrib>Gaofeng Deng</creatorcontrib><creatorcontrib>Zhongshan Fan</creatorcontrib><creatorcontrib>Mingwei Wang</creatorcontrib><title>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</title><title>2008 IEEE International Conference on Automation and Logistics</title><addtitle>ICAL</addtitle><description>Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC).</description><subject>Clustering algorithms</subject><subject>Distance measurement</subject><subject>Equations</subject><subject>Gallium</subject><subject>Grid</subject><subject>Hybrid Particle Swarm Optimization</subject><subject>Mathematical model</subject><subject>Obstacles Constraints</subject><subject>Obstructed Distance</subject><subject>Partitioning algorithms</subject><subject>Spatial clustering</subject><subject>Spatial databases</subject><issn>2161-8151</issn><issn>2161-816X</issn><isbn>9781424425020</isbn><isbn>1424425026</isbn><isbn>1424425034</isbn><isbn>9781424425037</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEYheOlYFvnAcRNXmDGXP4kk6UM2gqFClVwV_I3GY2M0zKJSN9ei9WzOYsPPjiHkCvOKs6ZvXlobheVYKyuQEstmT4hEw4CQCgm4ZSMBde8rLl-OSOFNfUfE-z8nyk-IpODwzJpLFyQIqV39hNQUlk5Js1q53J0HW26z5TDEPtX-hXzG11iym7ThUSbbZ_y4GKfE8U9nT-ulhRdCp5uezobor8ko9Z1KRTHnpLn-7unZl4ulrPDiDJyo3KJ3lvDRfDGYq10u_G1BeTaoRbSbFojneMAPmCNLoAQAkFqAMRWtEqjnJLrX28MIax3Q_xww359PEd-A2OFUT4</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Xueping Zhang</creator><creator>Weidong Chen</creator><creator>Gaofeng Deng</creator><creator>Zhongshan Fan</creator><creator>Mingwei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</title><author>Xueping Zhang ; Weidong Chen ; Gaofeng Deng ; Zhongshan Fan ; Mingwei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bdd9712ed79b856fcd894b16ab6237cf73aa144deb8bae4222b43644bbf2f56b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clustering algorithms</topic><topic>Distance measurement</topic><topic>Equations</topic><topic>Gallium</topic><topic>Grid</topic><topic>Hybrid Particle Swarm Optimization</topic><topic>Mathematical model</topic><topic>Obstacles Constraints</topic><topic>Obstructed Distance</topic><topic>Partitioning algorithms</topic><topic>Spatial clustering</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Xueping Zhang</creatorcontrib><creatorcontrib>Weidong Chen</creatorcontrib><creatorcontrib>Gaofeng Deng</creatorcontrib><creatorcontrib>Zhongshan Fan</creatorcontrib><creatorcontrib>Mingwei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueping Zhang</au><au>Weidong Chen</au><au>Gaofeng Deng</au><au>Zhongshan Fan</au><au>Mingwei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</atitle><btitle>2008 IEEE International Conference on Automation and Logistics</btitle><stitle>ICAL</stitle><date>2008-09</date><risdate>2008</risdate><spage>1048</spage><epage>1053</epage><pages>1048-1053</pages><issn>2161-8151</issn><eissn>2161-816X</eissn><isbn>9781424425020</isbn><isbn>1424425026</isbn><eisbn>1424425034</eisbn><eisbn>9781424425037</eisbn><abstract>Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC).</abstract><pub>IEEE</pub><doi>10.1109/ICAL.2008.4636306</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-8151
ispartof 2008 IEEE International Conference on Automation and Logistics, 2008, p.1048-1053
issn 2161-8151
2161-816X
language eng
recordid cdi_ieee_primary_4636306
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Distance measurement
Equations
Gallium
Grid
Hybrid Particle Swarm Optimization
Mathematical model
Obstacles Constraints
Obstructed Distance
Partitioning algorithms
Spatial clustering
Spatial databases
title Spatial Clustering with Obstacles Constraints by HPSO based on Grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20Clustering%20with%20Obstacles%20Constraints%20by%20HPSO%20based%20on%20Grid&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Automation%20and%20Logistics&rft.au=Xueping%20Zhang&rft.date=2008-09&rft.spage=1048&rft.epage=1053&rft.pages=1048-1053&rft.issn=2161-8151&rft.eissn=2161-816X&rft.isbn=9781424425020&rft.isbn_list=1424425026&rft_id=info:doi/10.1109/ICAL.2008.4636306&rft_dat=%3Cieee_6IE%3E4636306%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425034&rft.eisbn_list=9781424425037&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4636306&rfr_iscdi=true