Spatial Clustering with Obstacles Constraints by HPSO based on Grid
Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using a...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1053 |
---|---|
container_issue | |
container_start_page | 1048 |
container_title | |
container_volume | |
creator | Xueping Zhang Weidong Chen Gaofeng Deng Zhongshan Fan Mingwei Wang |
description | Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC). |
doi_str_mv | 10.1109/ICAL.2008.4636306 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4636306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4636306</ieee_id><sourcerecordid>4636306</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bdd9712ed79b856fcd894b16ab6237cf73aa144deb8bae4222b43644bbf2f56b3</originalsourceid><addsrcrecordid>eNo9kMtKAzEYheOlYFvnAcRNXmDGXP4kk6UM2gqFClVwV_I3GY2M0zKJSN9ei9WzOYsPPjiHkCvOKs6ZvXlobheVYKyuQEstmT4hEw4CQCgm4ZSMBde8rLl-OSOFNfUfE-z8nyk-IpODwzJpLFyQIqV39hNQUlk5Js1q53J0HW26z5TDEPtX-hXzG11iym7ThUSbbZ_y4GKfE8U9nT-ulhRdCp5uezobor8ko9Z1KRTHnpLn-7unZl4ulrPDiDJyo3KJ3lvDRfDGYq10u_G1BeTaoRbSbFojneMAPmCNLoAQAkFqAMRWtEqjnJLrX28MIax3Q_xww359PEd-A2OFUT4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xueping Zhang ; Weidong Chen ; Gaofeng Deng ; Zhongshan Fan ; Mingwei Wang</creator><creatorcontrib>Xueping Zhang ; Weidong Chen ; Gaofeng Deng ; Zhongshan Fan ; Mingwei Wang</creatorcontrib><description>Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC).</description><identifier>ISSN: 2161-8151</identifier><identifier>ISBN: 9781424425020</identifier><identifier>ISBN: 1424425026</identifier><identifier>EISSN: 2161-816X</identifier><identifier>EISBN: 1424425034</identifier><identifier>EISBN: 9781424425037</identifier><identifier>DOI: 10.1109/ICAL.2008.4636306</identifier><identifier>LCCN: 2008903794</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Distance measurement ; Equations ; Gallium ; Grid ; Hybrid Particle Swarm Optimization ; Mathematical model ; Obstacles Constraints ; Obstructed Distance ; Partitioning algorithms ; Spatial clustering ; Spatial databases</subject><ispartof>2008 IEEE International Conference on Automation and Logistics, 2008, p.1048-1053</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4636306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4636306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xueping Zhang</creatorcontrib><creatorcontrib>Weidong Chen</creatorcontrib><creatorcontrib>Gaofeng Deng</creatorcontrib><creatorcontrib>Zhongshan Fan</creatorcontrib><creatorcontrib>Mingwei Wang</creatorcontrib><title>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</title><title>2008 IEEE International Conference on Automation and Logistics</title><addtitle>ICAL</addtitle><description>Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC).</description><subject>Clustering algorithms</subject><subject>Distance measurement</subject><subject>Equations</subject><subject>Gallium</subject><subject>Grid</subject><subject>Hybrid Particle Swarm Optimization</subject><subject>Mathematical model</subject><subject>Obstacles Constraints</subject><subject>Obstructed Distance</subject><subject>Partitioning algorithms</subject><subject>Spatial clustering</subject><subject>Spatial databases</subject><issn>2161-8151</issn><issn>2161-816X</issn><isbn>9781424425020</isbn><isbn>1424425026</isbn><isbn>1424425034</isbn><isbn>9781424425037</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEYheOlYFvnAcRNXmDGXP4kk6UM2gqFClVwV_I3GY2M0zKJSN9ei9WzOYsPPjiHkCvOKs6ZvXlobheVYKyuQEstmT4hEw4CQCgm4ZSMBde8rLl-OSOFNfUfE-z8nyk-IpODwzJpLFyQIqV39hNQUlk5Js1q53J0HW26z5TDEPtX-hXzG11iym7ThUSbbZ_y4GKfE8U9nT-ulhRdCp5uezobor8ko9Z1KRTHnpLn-7unZl4ulrPDiDJyo3KJ3lvDRfDGYq10u_G1BeTaoRbSbFojneMAPmCNLoAQAkFqAMRWtEqjnJLrX28MIax3Q_xww359PEd-A2OFUT4</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Xueping Zhang</creator><creator>Weidong Chen</creator><creator>Gaofeng Deng</creator><creator>Zhongshan Fan</creator><creator>Mingwei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</title><author>Xueping Zhang ; Weidong Chen ; Gaofeng Deng ; Zhongshan Fan ; Mingwei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bdd9712ed79b856fcd894b16ab6237cf73aa144deb8bae4222b43644bbf2f56b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clustering algorithms</topic><topic>Distance measurement</topic><topic>Equations</topic><topic>Gallium</topic><topic>Grid</topic><topic>Hybrid Particle Swarm Optimization</topic><topic>Mathematical model</topic><topic>Obstacles Constraints</topic><topic>Obstructed Distance</topic><topic>Partitioning algorithms</topic><topic>Spatial clustering</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Xueping Zhang</creatorcontrib><creatorcontrib>Weidong Chen</creatorcontrib><creatorcontrib>Gaofeng Deng</creatorcontrib><creatorcontrib>Zhongshan Fan</creatorcontrib><creatorcontrib>Mingwei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueping Zhang</au><au>Weidong Chen</au><au>Gaofeng Deng</au><au>Zhongshan Fan</au><au>Mingwei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial Clustering with Obstacles Constraints by HPSO based on Grid</atitle><btitle>2008 IEEE International Conference on Automation and Logistics</btitle><stitle>ICAL</stitle><date>2008-09</date><risdate>2008</risdate><spage>1048</spage><epage>1053</epage><pages>1048-1053</pages><issn>2161-8151</issn><eissn>2161-816X</eissn><isbn>9781424425020</isbn><isbn>1424425026</isbn><eisbn>1424425034</eisbn><eisbn>9781424425037</eisbn><abstract>Spatial clustering has been an active research area in the data mining community. Spatial clustering is not only an important effective method but also a prelude of other task for spatial data mining (SDM).In this paper, we propose a novel spatial clustering with obstacles constraints (SCOC) using an advanced hybrid particle swarm optimization (HPSO) with GA mutation based on grid model. In the process of doing so, we first developed a novel spatial obstructed distance using HPSO based on grid model (HGSOD) to obtain obstructed distance, and then we presented a new HPKSCOC based on HPSO and K-Medoids to cluster spatial data with obstacles constraints. The experimental results show that HGSOD is effective, and HPKSCOC can not only give attention to higher local constringency speed and stronger global optimum search, but also get down to the obstacles constraints and practicalities of spatial clustering; and it performs better than improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than genetic K-Medoids SCOC (GKSCOC).</abstract><pub>IEEE</pub><doi>10.1109/ICAL.2008.4636306</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-8151 |
ispartof | 2008 IEEE International Conference on Automation and Logistics, 2008, p.1048-1053 |
issn | 2161-8151 2161-816X |
language | eng |
recordid | cdi_ieee_primary_4636306 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Distance measurement Equations Gallium Grid Hybrid Particle Swarm Optimization Mathematical model Obstacles Constraints Obstructed Distance Partitioning algorithms Spatial clustering Spatial databases |
title | Spatial Clustering with Obstacles Constraints by HPSO based on Grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20Clustering%20with%20Obstacles%20Constraints%20by%20HPSO%20based%20on%20Grid&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Automation%20and%20Logistics&rft.au=Xueping%20Zhang&rft.date=2008-09&rft.spage=1048&rft.epage=1053&rft.pages=1048-1053&rft.issn=2161-8151&rft.eissn=2161-816X&rft.isbn=9781424425020&rft.isbn_list=1424425026&rft_id=info:doi/10.1109/ICAL.2008.4636306&rft_dat=%3Cieee_6IE%3E4636306%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425034&rft.eisbn_list=9781424425037&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4636306&rfr_iscdi=true |