An adaptive feedback neural network approach to job-shop scheduling problem
Job-shop scheduling problem is a typical representative of NP-complete problems and it is also a popular topic for the researchers during the recent decades. Lots of artificial intelligence techniques were used to solve this kind of problems, such as: genetic algorithm, tabu searching method, simula...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3954 |
---|---|
container_issue | |
container_start_page | 3949 |
container_title | |
container_volume | 10 |
creator | Zhang, Wenle Luo, Rutao |
description | Job-shop scheduling problem is a typical representative of NP-complete problems and it is also a popular topic for the researchers during the recent decades. Lots of artificial intelligence techniques were used to solve this kind of problems, such as: genetic algorithm, tabu searching method, simulated annealing and neural network. Based on the previous research of Zhou and Willems, this paper proposes a neuro-dynamic model with two heuristics to solve job-shop scheduling problems. The stability of this neural network is proven by using Lyapunov stability theorem. Both small-size and big-size problems are used to test this neural network. Simulation results of some tested samples are given. And the performance of this neural network is compared with several other neural works under experimental conditions. |
doi_str_mv | 10.1109/IJCNN.2008.4634365 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4634365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634365</ieee_id><sourcerecordid>34496084</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-9a54b328a948aa9b763c3690cd35cb94910bfc4e0fd9c30313dd4ed922faced03</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1Loi38Abj4xC1l7d2m8RFVPApVucA5cuwNTZs2IU5A_HsitYjLzOEbzUgjxJWCsVJgbufPs-VyrAGSMcVIGE-OxFCRJlKJVvGxGPSqIiKYnvwDSE7_ABo8F8MQ1gAajcGBeLnbSett3RZfLHNmn1m3kTvuGlv21n5XzUbaum4q61ayreS6yqKwqmoZ3Ip9Vxa7D9nTrOTthTjLbRn48uAj8f5w_zZ7ihavj_PZ3SIqNMRtZOyEMtSJNZRYa7JpjA5jA87jxGWGjIIsd8SQe-MQUKH3xN5onVvHHnAkbva9_e5nx6FNt0VwXJZ2x1UXUiQyMSTUB6_3wYKZ07optrb5SQ_X4S9Fw18V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34496084</pqid></control><display><type>conference_proceeding</type><title>An adaptive feedback neural network approach to job-shop scheduling problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhang, Wenle ; Luo, Rutao</creator><creatorcontrib>Zhang, Wenle ; Luo, Rutao</creatorcontrib><description>Job-shop scheduling problem is a typical representative of NP-complete problems and it is also a popular topic for the researchers during the recent decades. Lots of artificial intelligence techniques were used to solve this kind of problems, such as: genetic algorithm, tabu searching method, simulated annealing and neural network. Based on the previous research of Zhou and Willems, this paper proposes a neuro-dynamic model with two heuristics to solve job-shop scheduling problems. The stability of this neural network is proven by using Lyapunov stability theorem. Both small-size and big-size problems are used to test this neural network. Simulation results of some tested samples are given. And the performance of this neural network is compared with several other neural works under experimental conditions.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634365</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Conferences ; Joints</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3949-3954</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2051,27903,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wenle</creatorcontrib><creatorcontrib>Luo, Rutao</creatorcontrib><title>An adaptive feedback neural network approach to job-shop scheduling problem</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>Job-shop scheduling problem is a typical representative of NP-complete problems and it is also a popular topic for the researchers during the recent decades. Lots of artificial intelligence techniques were used to solve this kind of problems, such as: genetic algorithm, tabu searching method, simulated annealing and neural network. Based on the previous research of Zhou and Willems, this paper proposes a neuro-dynamic model with two heuristics to solve job-shop scheduling problems. The stability of this neural network is proven by using Lyapunov stability theorem. Both small-size and big-size problems are used to test this neural network. Simulation results of some tested samples are given. And the performance of this neural network is compared with several other neural works under experimental conditions.</description><subject>Artificial neural networks</subject><subject>Conferences</subject><subject>Joints</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtPwzAQhM1Loi38Abj4xC1l7d2m8RFVPApVucA5cuwNTZs2IU5A_HsitYjLzOEbzUgjxJWCsVJgbufPs-VyrAGSMcVIGE-OxFCRJlKJVvGxGPSqIiKYnvwDSE7_ABo8F8MQ1gAajcGBeLnbSett3RZfLHNmn1m3kTvuGlv21n5XzUbaum4q61ayreS6yqKwqmoZ3Ip9Vxa7D9nTrOTthTjLbRn48uAj8f5w_zZ7ihavj_PZ3SIqNMRtZOyEMtSJNZRYa7JpjA5jA87jxGWGjIIsd8SQe-MQUKH3xN5onVvHHnAkbva9_e5nx6FNt0VwXJZ2x1UXUiQyMSTUB6_3wYKZ07optrb5SQ_X4S9Fw18V</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Zhang, Wenle</creator><creator>Luo, Rutao</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>An adaptive feedback neural network approach to job-shop scheduling problem</title><author>Zhang, Wenle ; Luo, Rutao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-9a54b328a948aa9b763c3690cd35cb94910bfc4e0fd9c30313dd4ed922faced03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Conferences</topic><topic>Joints</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenle</creatorcontrib><creatorcontrib>Luo, Rutao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wenle</au><au>Luo, Rutao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An adaptive feedback neural network approach to job-shop scheduling problem</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>3949</spage><epage>3954</epage><pages>3949-3954</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>Job-shop scheduling problem is a typical representative of NP-complete problems and it is also a popular topic for the researchers during the recent decades. Lots of artificial intelligence techniques were used to solve this kind of problems, such as: genetic algorithm, tabu searching method, simulated annealing and neural network. Based on the previous research of Zhou and Willems, this paper proposes a neuro-dynamic model with two heuristics to solve job-shop scheduling problems. The stability of this neural network is proven by using Lyapunov stability theorem. Both small-size and big-size problems are used to test this neural network. Simulation results of some tested samples are given. And the performance of this neural network is compared with several other neural works under experimental conditions.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634365</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3949-3954 |
issn | 2161-4393 1522-4899 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_4634365 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Conferences Joints |
title | An adaptive feedback neural network approach to job-shop scheduling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20adaptive%20feedback%20neural%20network%20approach%20to%20job-shop%20scheduling%20problem&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Zhang,%20Wenle&rft.date=2008-06-01&rft.volume=10&rft.spage=3949&rft.epage=3954&rft.pages=3949-3954&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634365&rft_dat=%3Cproquest_6IE%3E34496084%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34496084&rft_id=info:pmid/&rft_ieee_id=4634365&rfr_iscdi=true |