Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system

The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matsumoto, Y., Umano, M., Inuiguchi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3434
container_issue
container_start_page 3428
container_title
container_volume 10
creator Matsumoto, Y.
Umano, M.
Inuiguchi, M.
description The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation.
doi_str_mv 10.1109/IJCNN.2008.4634286
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4634286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634286</ieee_id><sourcerecordid>34552461</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-be8cb67d9d21727cc7c404d4830d8d371916ad0a47956b15821105e0278f97623</originalsourceid><addsrcrecordid>eNpFkDtPwzAAhM1Loi38AVg8saX4FT9GVPEoqtoB6Bo5idMaJXaIHVD762nVIpa74TuddAfADUZjjJG6n75O5vMxQUiOGaeMSH4ChpgRxrAkmJ-CwU5xwhgSZ_8AyfM_QBW9BMMQPhEiVCk6AO3Shl7Xdquj9Q7-2LiGS9955y2MJgRT1weiXQkb_23dCvo-tn2EvbMxQOvgm6mrZNGttLPbPW90C30F49rAzug6cX2Tmw6GTYimuQIXla6DuT76CHw8Pb5PXpLZ4nk6eZglliAek9zIIueiVCXBgoiiEAVDrGSSolKWVGCFuS6RZkKlPMfpbj9GqUFEyEoJTugI3B16285_9SbErLGh2M9xxvchoyxNCeN4F7w9BK0xJms72-hukx3_pb-GEWvp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34552461</pqid></control><display><type>conference_proceeding</type><title>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matsumoto, Y. ; Umano, M. ; Inuiguchi, M.</creator><creatorcontrib>Matsumoto, Y. ; Umano, M. ; Inuiguchi, M.</creatorcontrib><description>The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634286</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data visualization ; Distance measurement ; Horses ; Measurement uncertainty ; Quantization ; Training</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3428-3434</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634286$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,2054,27907,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634286$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><creatorcontrib>Inuiguchi, M.</creatorcontrib><title>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation.</description><subject>Artificial neural networks</subject><subject>Data visualization</subject><subject>Distance measurement</subject><subject>Horses</subject><subject>Measurement uncertainty</subject><subject>Quantization</subject><subject>Training</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkDtPwzAAhM1Loi38AVg8saX4FT9GVPEoqtoB6Bo5idMaJXaIHVD762nVIpa74TuddAfADUZjjJG6n75O5vMxQUiOGaeMSH4ChpgRxrAkmJ-CwU5xwhgSZ_8AyfM_QBW9BMMQPhEiVCk6AO3Shl7Xdquj9Q7-2LiGS9955y2MJgRT1weiXQkb_23dCvo-tn2EvbMxQOvgm6mrZNGttLPbPW90C30F49rAzug6cX2Tmw6GTYimuQIXla6DuT76CHw8Pb5PXpLZ4nk6eZglliAek9zIIueiVCXBgoiiEAVDrGSSolKWVGCFuS6RZkKlPMfpbj9GqUFEyEoJTugI3B16285_9SbErLGh2M9xxvchoyxNCeN4F7w9BK0xJms72-hukx3_pb-GEWvp</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Matsumoto, Y.</creator><creator>Umano, M.</creator><creator>Inuiguchi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</title><author>Matsumoto, Y. ; Umano, M. ; Inuiguchi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-be8cb67d9d21727cc7c404d4830d8d371916ad0a47956b15821105e0278f97623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Data visualization</topic><topic>Distance measurement</topic><topic>Horses</topic><topic>Measurement uncertainty</topic><topic>Quantization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><creatorcontrib>Inuiguchi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsumoto, Y.</au><au>Umano, M.</au><au>Inuiguchi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>3428</spage><epage>3434</epage><pages>3428-3434</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634286</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3428-3434
issn 2161-4393
1522-4899
2161-4407
language eng
recordid cdi_ieee_primary_4634286
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Data visualization
Distance measurement
Horses
Measurement uncertainty
Quantization
Training
title Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visualization%20with%20Voronoi%20tessellation%20and%20moving%20output%20units%20in%20Self-Organizing%20map%20of%20the%20real-number%20system&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Matsumoto,%20Y.&rft.date=2008-06-01&rft.volume=10&rft.spage=3428&rft.epage=3434&rft.pages=3428-3434&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634286&rft_dat=%3Cproquest_6IE%3E34552461%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34552461&rft_id=info:pmid/&rft_ieee_id=4634286&rfr_iscdi=true