Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system
The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3434 |
---|---|
container_issue | |
container_start_page | 3428 |
container_title | |
container_volume | 10 |
creator | Matsumoto, Y. Umano, M. Inuiguchi, M. |
description | The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation. |
doi_str_mv | 10.1109/IJCNN.2008.4634286 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4634286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634286</ieee_id><sourcerecordid>34552461</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-be8cb67d9d21727cc7c404d4830d8d371916ad0a47956b15821105e0278f97623</originalsourceid><addsrcrecordid>eNpFkDtPwzAAhM1Loi38AVg8saX4FT9GVPEoqtoB6Bo5idMaJXaIHVD762nVIpa74TuddAfADUZjjJG6n75O5vMxQUiOGaeMSH4ChpgRxrAkmJ-CwU5xwhgSZ_8AyfM_QBW9BMMQPhEiVCk6AO3Shl7Xdquj9Q7-2LiGS9955y2MJgRT1weiXQkb_23dCvo-tn2EvbMxQOvgm6mrZNGttLPbPW90C30F49rAzug6cX2Tmw6GTYimuQIXla6DuT76CHw8Pb5PXpLZ4nk6eZglliAek9zIIueiVCXBgoiiEAVDrGSSolKWVGCFuS6RZkKlPMfpbj9GqUFEyEoJTugI3B16285_9SbErLGh2M9xxvchoyxNCeN4F7w9BK0xJms72-hukx3_pb-GEWvp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34552461</pqid></control><display><type>conference_proceeding</type><title>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matsumoto, Y. ; Umano, M. ; Inuiguchi, M.</creator><creatorcontrib>Matsumoto, Y. ; Umano, M. ; Inuiguchi, M.</creatorcontrib><description>The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634286</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data visualization ; Distance measurement ; Horses ; Measurement uncertainty ; Quantization ; Training</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3428-3434</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634286$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,2054,27907,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634286$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><creatorcontrib>Inuiguchi, M.</creatorcontrib><title>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation.</description><subject>Artificial neural networks</subject><subject>Data visualization</subject><subject>Distance measurement</subject><subject>Horses</subject><subject>Measurement uncertainty</subject><subject>Quantization</subject><subject>Training</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkDtPwzAAhM1Loi38AVg8saX4FT9GVPEoqtoB6Bo5idMaJXaIHVD762nVIpa74TuddAfADUZjjJG6n75O5vMxQUiOGaeMSH4ChpgRxrAkmJ-CwU5xwhgSZ_8AyfM_QBW9BMMQPhEiVCk6AO3Shl7Xdquj9Q7-2LiGS9955y2MJgRT1weiXQkb_23dCvo-tn2EvbMxQOvgm6mrZNGttLPbPW90C30F49rAzug6cX2Tmw6GTYimuQIXla6DuT76CHw8Pb5PXpLZ4nk6eZglliAek9zIIueiVCXBgoiiEAVDrGSSolKWVGCFuS6RZkKlPMfpbj9GqUFEyEoJTugI3B16285_9SbErLGh2M9xxvchoyxNCeN4F7w9BK0xJms72-hukx3_pb-GEWvp</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Matsumoto, Y.</creator><creator>Umano, M.</creator><creator>Inuiguchi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</title><author>Matsumoto, Y. ; Umano, M. ; Inuiguchi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-be8cb67d9d21727cc7c404d4830d8d371916ad0a47956b15821105e0278f97623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Data visualization</topic><topic>Distance measurement</topic><topic>Horses</topic><topic>Measurement uncertainty</topic><topic>Quantization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><creatorcontrib>Inuiguchi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsumoto, Y.</au><au>Umano, M.</au><au>Inuiguchi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>3428</spage><epage>3434</epage><pages>3428-3434</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>The Self-Organizing map (SOM) proposed by T. Kohonen is a method to produce a low-dimensional representation from high-dimensional input data automatically, where output units are restrictedly placed on grid points. We propose real-number SOM (RSOM), where output units are freely placed on the real-number coordinates plane and visualized as a Voronoi diagram. RSOM is a natural extension of the conventional SOM because Voronoi tessellation for the output units on the square grid generates square regions on the output plane, the same as the conventional SOM. We propose two methods of moving with preserving topology of the input data and several visualization method such as minimum spanning tree, variable boundary width and spherical RSOM. We illustrate moving methods decrease errors in results of simulation.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634286</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.3428-3434 |
issn | 2161-4393 1522-4899 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_4634286 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Data visualization Distance measurement Horses Measurement uncertainty Quantization Training |
title | Visualization with Voronoi tessellation and moving output units in Self-Organizing map of the real-number system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visualization%20with%20Voronoi%20tessellation%20and%20moving%20output%20units%20in%20Self-Organizing%20map%20of%20the%20real-number%20system&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Matsumoto,%20Y.&rft.date=2008-06-01&rft.volume=10&rft.spage=3428&rft.epage=3434&rft.pages=3428-3434&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634286&rft_dat=%3Cproquest_6IE%3E34552461%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34552461&rft_id=info:pmid/&rft_ieee_id=4634286&rfr_iscdi=true |