A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization

Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Panzhi, Han, Chongzhao, Jie, Jing
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2376
container_issue
container_start_page 2371
container_title
container_volume 10
creator Liu, Panzhi
Han, Chongzhao
Jie, Jing
description Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm.
doi_str_mv 10.1109/IJCNN.2008.4634127
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4634127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634127</ieee_id><sourcerecordid>34549166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-f6cc31346253c7fff5a3f73af911699766ca962e13b50c031fe6b293ac0ab2dd3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxeM_cJt-AX3Jk2-dSW6aLo-jOJ2MCaLP5TZNaKVdahMR_fQWN_HlHDjnx-VwCbnibM4507frx3y7nQvGFnOpQHKRHZEpl0JKvhBcHZPJqDyRkmUn_wVbnP4VoOGcTEN4Y0yA1jAh1ZLGerCh9m1FHZroB4p9P3g0Ne1srP0Yj1m-Wj7Tykb7S5QYbEX9joboTY0hNob2OIzWWho-ceio72PTNd8YG7-7IGcO22AvDz4jr6u7l_wh2Tzdr_PlJmkEUzFxyhjgIJVIwWTOuRTBZYBOc660zpQyqJWwHMqUGQbcWVUKDWgYlqKqYEZu9nfH_e8fNsSia4KxbYs76z9CATKVmis1gtd7sLHWFv3QdDh8FYefwg8-VGf3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34549166</pqid></control><display><type>conference_proceeding</type><title>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu, Panzhi ; Han, Chongzhao ; Jie, Jing</creator><creatorcontrib>Liu, Panzhi ; Han, Chongzhao ; Jie, Jing</creatorcontrib><description>Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634127</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; CFAR detector ; Clutter ; Detectors ; Estimation ; Particle swarm optimization ; Radar ; Radar detection ; Scaling factor ; stochastic particle swarm optimization (SPSO)</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.2371-2376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Panzhi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Jie, Jing</creatorcontrib><title>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm.</description><subject>Artificial neural networks</subject><subject>CFAR detector</subject><subject>Clutter</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Particle swarm optimization</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Scaling factor</subject><subject>stochastic particle swarm optimization (SPSO)</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkF9LwzAUxeM_cJt-AX3Jk2-dSW6aLo-jOJ2MCaLP5TZNaKVdahMR_fQWN_HlHDjnx-VwCbnibM4507frx3y7nQvGFnOpQHKRHZEpl0JKvhBcHZPJqDyRkmUn_wVbnP4VoOGcTEN4Y0yA1jAh1ZLGerCh9m1FHZroB4p9P3g0Ne1srP0Yj1m-Wj7Tykb7S5QYbEX9joboTY0hNob2OIzWWho-ceio72PTNd8YG7-7IGcO22AvDz4jr6u7l_wh2Tzdr_PlJmkEUzFxyhjgIJVIwWTOuRTBZYBOc660zpQyqJWwHMqUGQbcWVUKDWgYlqKqYEZu9nfH_e8fNsSia4KxbYs76z9CATKVmis1gtd7sLHWFv3QdDh8FYefwg8-VGf3</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Liu, Panzhi</creator><creator>Han, Chongzhao</creator><creator>Jie, Jing</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</title><author>Liu, Panzhi ; Han, Chongzhao ; Jie, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-f6cc31346253c7fff5a3f73af911699766ca962e13b50c031fe6b293ac0ab2dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>CFAR detector</topic><topic>Clutter</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Particle swarm optimization</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Scaling factor</topic><topic>stochastic particle swarm optimization (SPSO)</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Panzhi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Jie, Jing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Panzhi</au><au>Han, Chongzhao</au><au>Jie, Jing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>2371</spage><epage>2376</epage><pages>2371-2376</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634127</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.2371-2376
issn 2161-4393
1522-4899
2161-4407
language eng
recordid cdi_ieee_primary_4634127
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
CFAR detector
Clutter
Detectors
Estimation
Particle swarm optimization
Radar
Radar detection
Scaling factor
stochastic particle swarm optimization (SPSO)
title A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20threshold%20factor%20approach%20method%20for%20CFAR%20detector%20based%20on%20stochastic%20particle%20swarm%20optimization&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Liu,%20Panzhi&rft.date=2008-06-01&rft.volume=10&rft.spage=2371&rft.epage=2376&rft.pages=2371-2376&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634127&rft_dat=%3Cproquest_6IE%3E34549166%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34549166&rft_id=info:pmid/&rft_ieee_id=4634127&rfr_iscdi=true