A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization
Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor fo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2376 |
---|---|
container_issue | |
container_start_page | 2371 |
container_title | |
container_volume | 10 |
creator | Liu, Panzhi Han, Chongzhao Jie, Jing |
description | Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm. |
doi_str_mv | 10.1109/IJCNN.2008.4634127 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4634127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634127</ieee_id><sourcerecordid>34549166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-f6cc31346253c7fff5a3f73af911699766ca962e13b50c031fe6b293ac0ab2dd3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxeM_cJt-AX3Jk2-dSW6aLo-jOJ2MCaLP5TZNaKVdahMR_fQWN_HlHDjnx-VwCbnibM4507frx3y7nQvGFnOpQHKRHZEpl0JKvhBcHZPJqDyRkmUn_wVbnP4VoOGcTEN4Y0yA1jAh1ZLGerCh9m1FHZroB4p9P3g0Ne1srP0Yj1m-Wj7Tykb7S5QYbEX9joboTY0hNob2OIzWWho-ceio72PTNd8YG7-7IGcO22AvDz4jr6u7l_wh2Tzdr_PlJmkEUzFxyhjgIJVIwWTOuRTBZYBOc660zpQyqJWwHMqUGQbcWVUKDWgYlqKqYEZu9nfH_e8fNsSia4KxbYs76z9CATKVmis1gtd7sLHWFv3QdDh8FYefwg8-VGf3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34549166</pqid></control><display><type>conference_proceeding</type><title>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu, Panzhi ; Han, Chongzhao ; Jie, Jing</creator><creatorcontrib>Liu, Panzhi ; Han, Chongzhao ; Jie, Jing</creatorcontrib><description>Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634127</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; CFAR detector ; Clutter ; Detectors ; Estimation ; Particle swarm optimization ; Radar ; Radar detection ; Scaling factor ; stochastic particle swarm optimization (SPSO)</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.2371-2376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Panzhi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Jie, Jing</creatorcontrib><title>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm.</description><subject>Artificial neural networks</subject><subject>CFAR detector</subject><subject>Clutter</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Particle swarm optimization</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Scaling factor</subject><subject>stochastic particle swarm optimization (SPSO)</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkF9LwzAUxeM_cJt-AX3Jk2-dSW6aLo-jOJ2MCaLP5TZNaKVdahMR_fQWN_HlHDjnx-VwCbnibM4507frx3y7nQvGFnOpQHKRHZEpl0JKvhBcHZPJqDyRkmUn_wVbnP4VoOGcTEN4Y0yA1jAh1ZLGerCh9m1FHZroB4p9P3g0Ne1srP0Yj1m-Wj7Tykb7S5QYbEX9joboTY0hNob2OIzWWho-ceio72PTNd8YG7-7IGcO22AvDz4jr6u7l_wh2Tzdr_PlJmkEUzFxyhjgIJVIwWTOuRTBZYBOc660zpQyqJWwHMqUGQbcWVUKDWgYlqKqYEZu9nfH_e8fNsSia4KxbYs76z9CATKVmis1gtd7sLHWFv3QdDh8FYefwg8-VGf3</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Liu, Panzhi</creator><creator>Han, Chongzhao</creator><creator>Jie, Jing</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</title><author>Liu, Panzhi ; Han, Chongzhao ; Jie, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-f6cc31346253c7fff5a3f73af911699766ca962e13b50c031fe6b293ac0ab2dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>CFAR detector</topic><topic>Clutter</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Particle swarm optimization</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Scaling factor</topic><topic>stochastic particle swarm optimization (SPSO)</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Panzhi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Jie, Jing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Panzhi</au><au>Han, Chongzhao</au><au>Jie, Jing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>2371</spage><epage>2376</epage><pages>2371-2376</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>Based on the perfect properties of stochastic particle swarm optimization (SPSO), such as the property of robust and quick convergence, a new scheme is applied to estimate scaling factor for radar constant false alarm rate (CFAR) detectors. Owing to few constraints, it can estimate scaling factor for single radar as well as radar netting system. The numerical results indicate that the particle swarm optimizer has been found to be accuracy and fast in searching the threshold factor T of CFAR detector under any designed probability of false alarm.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634127</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.2371-2376 |
issn | 2161-4393 1522-4899 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_4634127 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks CFAR detector Clutter Detectors Estimation Particle swarm optimization Radar Radar detection Scaling factor stochastic particle swarm optimization (SPSO) |
title | A threshold factor approach method for CFAR detector based on stochastic particle swarm optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20threshold%20factor%20approach%20method%20for%20CFAR%20detector%20based%20on%20stochastic%20particle%20swarm%20optimization&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Liu,%20Panzhi&rft.date=2008-06-01&rft.volume=10&rft.spage=2371&rft.epage=2376&rft.pages=2371-2376&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634127&rft_dat=%3Cproquest_6IE%3E34549166%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34549166&rft_id=info:pmid/&rft_ieee_id=4634127&rfr_iscdi=true |