A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells
In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1535 |
---|---|
container_issue | |
container_start_page | 1531 |
container_title | |
container_volume | 10 |
creator | Hyun-Soo Kim Morris, B.G. Seung-Soo Han May, G.S. |
description | In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation. |
doi_str_mv | 10.1109/IJCNN.2008.4633999 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4633999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4633999</ieee_id><sourcerecordid>20665661</sourcerecordid><originalsourceid>FETCH-LOGICAL-i303t-5371cfd5dcb27b4056a8193a9957b615718e87d32dde36179f3f0a99aa28c4403</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhc1Loi38AVg8saXYvo5jj1XFo6gqC8yRmzitURKH2BGCX49LixhZ7KNzvnN1ZSN0RcmUUqJuF0_z1WrKCJFTLgCUUkdoTDnjnEpGxTEaxZMmnJPs5C8g8vQ3AAXnaOz9GyEs1mGEhhkuXNPp3nrXYlfhjWlNsAXWbYmjHWVtsP_QfYNdF2xjv3SwEa1cH5tt0EXY6Wbv2hZv7WabdKb_Mdsilm1tI4m9q3XsmLr2F-is0rU3l4d7gl7v717mj8ny-WExny0TCwRCkkJGi6pMy2LNsjUnqdCSKtBKpdla0DSj0sisBFaWBgTNVAUVianWTBbxFWCCbvZzu969D8aHvLF-t4FujRt8DpxLmoL8F2REiFQIGsHrPWiNMXnX20b3n_nhN-Abw1p7og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20665661</pqid></control><display><type>conference_proceeding</type><title>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyun-Soo Kim ; Morris, B.G. ; Seung-Soo Han ; May, G.S.</creator><creatorcontrib>Hyun-Soo Kim ; Morris, B.G. ; Seung-Soo Han ; May, G.S.</creatorcontrib><description>In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4633999</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Gallium ; Genetic algorithms ; Neurons ; Object oriented modeling ; Optimization ; Photovoltaic cells</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1531-1535</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4633999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4633999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyun-Soo Kim</creatorcontrib><creatorcontrib>Morris, B.G.</creatorcontrib><creatorcontrib>Seung-Soo Han</creatorcontrib><creatorcontrib>May, G.S.</creatorcontrib><title>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation.</description><subject>Artificial neural networks</subject><subject>Gallium</subject><subject>Genetic algorithms</subject><subject>Neurons</subject><subject>Object oriented modeling</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqFkTtPwzAUhc1Loi38AVg8saXYvo5jj1XFo6gqC8yRmzitURKH2BGCX49LixhZ7KNzvnN1ZSN0RcmUUqJuF0_z1WrKCJFTLgCUUkdoTDnjnEpGxTEaxZMmnJPs5C8g8vQ3AAXnaOz9GyEs1mGEhhkuXNPp3nrXYlfhjWlNsAXWbYmjHWVtsP_QfYNdF2xjv3SwEa1cH5tt0EXY6Wbv2hZv7WabdKb_Mdsilm1tI4m9q3XsmLr2F-is0rU3l4d7gl7v717mj8ny-WExny0TCwRCkkJGi6pMy2LNsjUnqdCSKtBKpdla0DSj0sisBFaWBgTNVAUVianWTBbxFWCCbvZzu969D8aHvLF-t4FujRt8DpxLmoL8F2REiFQIGsHrPWiNMXnX20b3n_nhN-Abw1p7og</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Hyun-Soo Kim</creator><creator>Morris, B.G.</creator><creator>Seung-Soo Han</creator><creator>May, G.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</title><author>Hyun-Soo Kim ; Morris, B.G. ; Seung-Soo Han ; May, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i303t-5371cfd5dcb27b4056a8193a9957b615718e87d32dde36179f3f0a99aa28c4403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Gallium</topic><topic>Genetic algorithms</topic><topic>Neurons</topic><topic>Object oriented modeling</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyun-Soo Kim</creatorcontrib><creatorcontrib>Morris, B.G.</creatorcontrib><creatorcontrib>Seung-Soo Han</creatorcontrib><creatorcontrib>May, G.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyun-Soo Kim</au><au>Morris, B.G.</au><au>Seung-Soo Han</au><au>May, G.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>1531</spage><epage>1535</epage><pages>1531-1535</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4633999</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1531-1535 |
issn | 2161-4393 1522-4899 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_4633999 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Gallium Genetic algorithms Neurons Object oriented modeling Optimization Photovoltaic cells |
title | A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20of%20genetic%20and%20particle%20swarm%20optimization%20for%20contact%20formation%20in%20high-performance%20silicon%20solar%20cells&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Hyun-Soo%20Kim&rft.date=2008-06-01&rft.volume=10&rft.spage=1531&rft.epage=1535&rft.pages=1531-1535&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4633999&rft_dat=%3Cproquest_6IE%3E20665661%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20665661&rft_id=info:pmid/&rft_ieee_id=4633999&rfr_iscdi=true |