A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells

In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hyun-Soo Kim, Morris, B.G., Seung-Soo Han, May, G.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1535
container_issue
container_start_page 1531
container_title
container_volume 10
creator Hyun-Soo Kim
Morris, B.G.
Seung-Soo Han
May, G.S.
description In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation.
doi_str_mv 10.1109/IJCNN.2008.4633999
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4633999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4633999</ieee_id><sourcerecordid>20665661</sourcerecordid><originalsourceid>FETCH-LOGICAL-i303t-5371cfd5dcb27b4056a8193a9957b615718e87d32dde36179f3f0a99aa28c4403</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhc1Loi38AVg8saXYvo5jj1XFo6gqC8yRmzitURKH2BGCX49LixhZ7KNzvnN1ZSN0RcmUUqJuF0_z1WrKCJFTLgCUUkdoTDnjnEpGxTEaxZMmnJPs5C8g8vQ3AAXnaOz9GyEs1mGEhhkuXNPp3nrXYlfhjWlNsAXWbYmjHWVtsP_QfYNdF2xjv3SwEa1cH5tt0EXY6Wbv2hZv7WabdKb_Mdsilm1tI4m9q3XsmLr2F-is0rU3l4d7gl7v717mj8ny-WExny0TCwRCkkJGi6pMy2LNsjUnqdCSKtBKpdla0DSj0sisBFaWBgTNVAUVianWTBbxFWCCbvZzu969D8aHvLF-t4FujRt8DpxLmoL8F2REiFQIGsHrPWiNMXnX20b3n_nhN-Abw1p7og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20665661</pqid></control><display><type>conference_proceeding</type><title>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyun-Soo Kim ; Morris, B.G. ; Seung-Soo Han ; May, G.S.</creator><creatorcontrib>Hyun-Soo Kim ; Morris, B.G. ; Seung-Soo Han ; May, G.S.</creatorcontrib><description>In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4633999</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Gallium ; Genetic algorithms ; Neurons ; Object oriented modeling ; Optimization ; Photovoltaic cells</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1531-1535</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4633999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4633999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyun-Soo Kim</creatorcontrib><creatorcontrib>Morris, B.G.</creatorcontrib><creatorcontrib>Seung-Soo Han</creatorcontrib><creatorcontrib>May, G.S.</creatorcontrib><title>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation.</description><subject>Artificial neural networks</subject><subject>Gallium</subject><subject>Genetic algorithms</subject><subject>Neurons</subject><subject>Object oriented modeling</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqFkTtPwzAUhc1Loi38AVg8saXYvo5jj1XFo6gqC8yRmzitURKH2BGCX49LixhZ7KNzvnN1ZSN0RcmUUqJuF0_z1WrKCJFTLgCUUkdoTDnjnEpGxTEaxZMmnJPs5C8g8vQ3AAXnaOz9GyEs1mGEhhkuXNPp3nrXYlfhjWlNsAXWbYmjHWVtsP_QfYNdF2xjv3SwEa1cH5tt0EXY6Wbv2hZv7WabdKb_Mdsilm1tI4m9q3XsmLr2F-is0rU3l4d7gl7v717mj8ny-WExny0TCwRCkkJGi6pMy2LNsjUnqdCSKtBKpdla0DSj0sisBFaWBgTNVAUVianWTBbxFWCCbvZzu969D8aHvLF-t4FujRt8DpxLmoL8F2REiFQIGsHrPWiNMXnX20b3n_nhN-Abw1p7og</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Hyun-Soo Kim</creator><creator>Morris, B.G.</creator><creator>Seung-Soo Han</creator><creator>May, G.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</title><author>Hyun-Soo Kim ; Morris, B.G. ; Seung-Soo Han ; May, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i303t-5371cfd5dcb27b4056a8193a9957b615718e87d32dde36179f3f0a99aa28c4403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Gallium</topic><topic>Genetic algorithms</topic><topic>Neurons</topic><topic>Object oriented modeling</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyun-Soo Kim</creatorcontrib><creatorcontrib>Morris, B.G.</creatorcontrib><creatorcontrib>Seung-Soo Han</creatorcontrib><creatorcontrib>May, G.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyun-Soo Kim</au><au>Morris, B.G.</au><au>Seung-Soo Han</au><au>May, G.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>1531</spage><epage>1535</epage><pages>1531-1535</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>In this paper, statistical experimental design is used to characterize the contact formation process for high-performance silicon solar cells. Central composite design is employed, and neural networks trained by the error back-propagation algorithm are used to model the relationships between several input factors and solar cell efficiency. Subsequently, both genetic algorithms and particle swarm optimization are used to identify the optimal process conditions to maximize cell efficiency. The results of the two approaches are compared, and the optimized efficiency found via the particle swarm method was slightly larger than the value determined via genetic algorithms. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller standard deviations, implying greater consistency in recipe generation.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4633999</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1531-1535
issn 2161-4393
1522-4899
2161-4407
language eng
recordid cdi_ieee_primary_4633999
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Gallium
Genetic algorithms
Neurons
Object oriented modeling
Optimization
Photovoltaic cells
title A comparison of genetic and particle swarm optimization for contact formation in high-performance silicon solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20of%20genetic%20and%20particle%20swarm%20optimization%20for%20contact%20formation%20in%20high-performance%20silicon%20solar%20cells&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Hyun-Soo%20Kim&rft.date=2008-06-01&rft.volume=10&rft.spage=1531&rft.epage=1535&rft.pages=1531-1535&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4633999&rft_dat=%3Cproquest_6IE%3E20665661%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20665661&rft_id=info:pmid/&rft_ieee_id=4633999&rfr_iscdi=true