Segmentation and registration of kidneys from contrast enhanced abdominal MR image

Subtraction of contrast enhanced magnetic resonance images acquired before and after the injection of a contrast agent is a common method used in clinical applications for identifying the tumor region. Because of the long duration of the acquisition process, patient movement and respiratory motion a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akyar, Hasan, Selver, M. Alper, Demir, Guleser K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Akyar, Hasan
Selver, M. Alper
Demir, Guleser K.
description Subtraction of contrast enhanced magnetic resonance images acquired before and after the injection of a contrast agent is a common method used in clinical applications for identifying the tumor region. Because of the long duration of the acquisition process, patient movement and respiratory motion are induced and registration is required to obtain accurate subtraction. In this paper, a method for more accurate subtraction of kidney images from MR is presented. Our starting point is the segmentation of kidneys from abdominal images to apply registration to only related region of interest. Segmentation of kidneys is automatically done with morphological operators based on the extraction of spine location. Then, Demon's deformable method for registration is applied to segmented kidneys by using an open source toolkit, called matitk, provided by insight toolkit.
doi_str_mv 10.1109/SIU.2008.4632678
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4632678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4632678</ieee_id><sourcerecordid>4632678</sourcerecordid><originalsourceid>FETCH-ieee_primary_46326783</originalsourceid><addsrcrecordid>eNp9jz9PwzAUxB-USrSQHYnFXyDh-U8de0agMrC0dK5M8xIMjY3sLP32WKKs3HLS_U4nHcAdx4ZztA_bl10jEE2jtBS6NRdQ2dZwJZTitugSFkJbWUvN9QyWf8DgVQFcr2rUaOawLButVXIl-DVUOX8iItdGSCsWsNnSMFKY3ORjYC50LNHg85R-g9izL98FOmXWpziyQwwF5YlR-HDhQB1z710cfXBH9rphfnQD3cK8d8dM1dlv4P756e1xXXsi2n-nUkqn_fmT_J_-AManSC0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmentation and registration of kidneys from contrast enhanced abdominal MR image</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akyar, Hasan ; Selver, M. Alper ; Demir, Guleser K.</creator><creatorcontrib>Akyar, Hasan ; Selver, M. Alper ; Demir, Guleser K.</creatorcontrib><description>Subtraction of contrast enhanced magnetic resonance images acquired before and after the injection of a contrast agent is a common method used in clinical applications for identifying the tumor region. Because of the long duration of the acquisition process, patient movement and respiratory motion are induced and registration is required to obtain accurate subtraction. In this paper, a method for more accurate subtraction of kidney images from MR is presented. Our starting point is the segmentation of kidneys from abdominal images to apply registration to only related region of interest. Segmentation of kidneys is automatically done with morphological operators based on the extraction of spine location. Then, Demon's deformable method for registration is applied to segmented kidneys by using an open source toolkit, called matitk, provided by insight toolkit.</description><identifier>ISSN: 2165-0608</identifier><identifier>ISBN: 1424419980</identifier><identifier>ISBN: 9781424419982</identifier><identifier>EISSN: 2693-3616</identifier><identifier>EISBN: 9781424419999</identifier><identifier>EISBN: 1424419999</identifier><identifier>DOI: 10.1109/SIU.2008.4632678</identifier><identifier>LCCN: 2007943521</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Computer languages ; Image matching ; Image registration ; Image segmentation ; Motion segmentation ; Spline</subject><ispartof>2008 IEEE 16th Signal Processing, Communication and Applications Conference, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4632678$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4632678$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akyar, Hasan</creatorcontrib><creatorcontrib>Selver, M. Alper</creatorcontrib><creatorcontrib>Demir, Guleser K.</creatorcontrib><title>Segmentation and registration of kidneys from contrast enhanced abdominal MR image</title><title>2008 IEEE 16th Signal Processing, Communication and Applications Conference</title><addtitle>SIU</addtitle><description>Subtraction of contrast enhanced magnetic resonance images acquired before and after the injection of a contrast agent is a common method used in clinical applications for identifying the tumor region. Because of the long duration of the acquisition process, patient movement and respiratory motion are induced and registration is required to obtain accurate subtraction. In this paper, a method for more accurate subtraction of kidney images from MR is presented. Our starting point is the segmentation of kidneys from abdominal images to apply registration to only related region of interest. Segmentation of kidneys is automatically done with morphological operators based on the extraction of spine location. Then, Demon's deformable method for registration is applied to segmented kidneys by using an open source toolkit, called matitk, provided by insight toolkit.</description><subject>Biomedical imaging</subject><subject>Computer languages</subject><subject>Image matching</subject><subject>Image registration</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>Spline</subject><issn>2165-0608</issn><issn>2693-3616</issn><isbn>1424419980</isbn><isbn>9781424419982</isbn><isbn>9781424419999</isbn><isbn>1424419999</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jz9PwzAUxB-USrSQHYnFXyDh-U8de0agMrC0dK5M8xIMjY3sLP32WKKs3HLS_U4nHcAdx4ZztA_bl10jEE2jtBS6NRdQ2dZwJZTitugSFkJbWUvN9QyWf8DgVQFcr2rUaOawLButVXIl-DVUOX8iItdGSCsWsNnSMFKY3ORjYC50LNHg85R-g9izL98FOmXWpziyQwwF5YlR-HDhQB1z710cfXBH9rphfnQD3cK8d8dM1dlv4P756e1xXXsi2n-nUkqn_fmT_J_-AManSC0</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Akyar, Hasan</creator><creator>Selver, M. Alper</creator><creator>Demir, Guleser K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200804</creationdate><title>Segmentation and registration of kidneys from contrast enhanced abdominal MR image</title><author>Akyar, Hasan ; Selver, M. Alper ; Demir, Guleser K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_46326783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Computer languages</topic><topic>Image matching</topic><topic>Image registration</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>Spline</topic><toplevel>online_resources</toplevel><creatorcontrib>Akyar, Hasan</creatorcontrib><creatorcontrib>Selver, M. Alper</creatorcontrib><creatorcontrib>Demir, Guleser K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akyar, Hasan</au><au>Selver, M. Alper</au><au>Demir, Guleser K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmentation and registration of kidneys from contrast enhanced abdominal MR image</atitle><btitle>2008 IEEE 16th Signal Processing, Communication and Applications Conference</btitle><stitle>SIU</stitle><date>2008-04</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2165-0608</issn><eissn>2693-3616</eissn><isbn>1424419980</isbn><isbn>9781424419982</isbn><eisbn>9781424419999</eisbn><eisbn>1424419999</eisbn><abstract>Subtraction of contrast enhanced magnetic resonance images acquired before and after the injection of a contrast agent is a common method used in clinical applications for identifying the tumor region. Because of the long duration of the acquisition process, patient movement and respiratory motion are induced and registration is required to obtain accurate subtraction. In this paper, a method for more accurate subtraction of kidney images from MR is presented. Our starting point is the segmentation of kidneys from abdominal images to apply registration to only related region of interest. Segmentation of kidneys is automatically done with morphological operators based on the extraction of spine location. Then, Demon's deformable method for registration is applied to segmented kidneys by using an open source toolkit, called matitk, provided by insight toolkit.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2008.4632678</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2165-0608
ispartof 2008 IEEE 16th Signal Processing, Communication and Applications Conference, 2008, p.1-4
issn 2165-0608
2693-3616
language eng
recordid cdi_ieee_primary_4632678
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Computer languages
Image matching
Image registration
Image segmentation
Motion segmentation
Spline
title Segmentation and registration of kidneys from contrast enhanced abdominal MR image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmentation%20and%20registration%20of%20kidneys%20from%20contrast%20enhanced%20abdominal%20MR%20image&rft.btitle=2008%20IEEE%2016th%20Signal%20Processing,%20Communication%20and%20Applications%20Conference&rft.au=Akyar,%20Hasan&rft.date=2008-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2165-0608&rft.eissn=2693-3616&rft.isbn=1424419980&rft.isbn_list=9781424419982&rft_id=info:doi/10.1109/SIU.2008.4632678&rft_dat=%3Cieee_6IE%3E4632678%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424419999&rft.eisbn_list=1424419999&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4632678&rfr_iscdi=true