Metric selection for information theoretic sensor management

Different information theoretic sensor management approaches are compared in a Bayesian target-tracking problem. Specifically, the performance using the expected Renyi divergence with different parameter values is compared theoretically and experimentally. Included is the special case in which the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aughenbaugh, J.M., La Cour, B.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Aughenbaugh, J.M.
La Cour, B.R.
description Different information theoretic sensor management approaches are compared in a Bayesian target-tracking problem. Specifically, the performance using the expected Renyi divergence with different parameter values is compared theoretically and experimentally. Included is the special case in which the expected Renyi divergence is equal to the expected Kullback-Leibler divergence, which is also equivalent to both the mutual information and the expected change in differential entropy for this Bayesian updating problem. The example problem involves a single target moving in a circle, four bearing-only sensors, and two time-delay sensors. A particle filter based tracker is used.
doi_str_mv 10.1109/ICIF.2008.4632451
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4632451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4632451</ieee_id><sourcerecordid>4632451</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e2dd34588327b55d6cf49b1dc623abb464e5ed59e5ebdbd8b150fc7c24d5b90e3</originalsourceid><addsrcrecordid>eNotT81Kw0AYXJGC2uYBxEteIPHb3-yCFwm2Bipeei_780VXmkSye_HtjbWXGYYZhhlC7inUlIJ57NpuWzMAXQvFmZD0ihSm0RwAmNCas2tyxzVAw8EwfUOKlL4WjxrVABe35OkN8xx9mfCEPsdpLPtpLuO44GDPOn_iNGM-Z8a0mIMd7QcOOOYNWfX2lLC48Jocti-H9rXav--69nlfRQO5QhYCF_JvTOOkDMr3wjgavGLcOieUQIlBmgVdcEE7KqH3jWciSGcA-Zo8_NdGRDx-z3Gw88_x8pf_ArHGSjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Metric selection for information theoretic sensor management</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aughenbaugh, J.M. ; La Cour, B.R.</creator><creatorcontrib>Aughenbaugh, J.M. ; La Cour, B.R.</creatorcontrib><description>Different information theoretic sensor management approaches are compared in a Bayesian target-tracking problem. Specifically, the performance using the expected Renyi divergence with different parameter values is compared theoretically and experimentally. Included is the special case in which the expected Renyi divergence is equal to the expected Kullback-Leibler divergence, which is also equivalent to both the mutual information and the expected change in differential entropy for this Bayesian updating problem. The example problem involves a single target moving in a circle, four bearing-only sensors, and two time-delay sensors. A particle filter based tracker is used.</description><identifier>ISBN: 3800730928</identifier><identifier>ISBN: 9783800730926</identifier><identifier>EISBN: 9783000248832</identifier><identifier>EISBN: 3000248838</identifier><identifier>DOI: 10.1109/ICIF.2008.4632451</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Bayesian methods ; Covariance matrix ; divergence ; Entropy ; Kullback-Leibler ; mutual information ; Particle filters ; Particle measurements ; Rényi ; sensor management ; Target tracking</subject><ispartof>2008 11th International Conference on Information Fusion, 2008, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4632451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4632451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aughenbaugh, J.M.</creatorcontrib><creatorcontrib>La Cour, B.R.</creatorcontrib><title>Metric selection for information theoretic sensor management</title><title>2008 11th International Conference on Information Fusion</title><addtitle>ICIF</addtitle><description>Different information theoretic sensor management approaches are compared in a Bayesian target-tracking problem. Specifically, the performance using the expected Renyi divergence with different parameter values is compared theoretically and experimentally. Included is the special case in which the expected Renyi divergence is equal to the expected Kullback-Leibler divergence, which is also equivalent to both the mutual information and the expected change in differential entropy for this Bayesian updating problem. The example problem involves a single target moving in a circle, four bearing-only sensors, and two time-delay sensors. A particle filter based tracker is used.</description><subject>Atmospheric measurements</subject><subject>Bayesian methods</subject><subject>Covariance matrix</subject><subject>divergence</subject><subject>Entropy</subject><subject>Kullback-Leibler</subject><subject>mutual information</subject><subject>Particle filters</subject><subject>Particle measurements</subject><subject>Rényi</subject><subject>sensor management</subject><subject>Target tracking</subject><isbn>3800730928</isbn><isbn>9783800730926</isbn><isbn>9783000248832</isbn><isbn>3000248838</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81Kw0AYXJGC2uYBxEteIPHb3-yCFwm2Bipeei_780VXmkSye_HtjbWXGYYZhhlC7inUlIJ57NpuWzMAXQvFmZD0ihSm0RwAmNCas2tyxzVAw8EwfUOKlL4WjxrVABe35OkN8xx9mfCEPsdpLPtpLuO44GDPOn_iNGM-Z8a0mIMd7QcOOOYNWfX2lLC48Jocti-H9rXav--69nlfRQO5QhYCF_JvTOOkDMr3wjgavGLcOieUQIlBmgVdcEE7KqH3jWciSGcA-Zo8_NdGRDx-z3Gw88_x8pf_ArHGSjw</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Aughenbaugh, J.M.</creator><creator>La Cour, B.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Metric selection for information theoretic sensor management</title><author>Aughenbaugh, J.M. ; La Cour, B.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e2dd34588327b55d6cf49b1dc623abb464e5ed59e5ebdbd8b150fc7c24d5b90e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atmospheric measurements</topic><topic>Bayesian methods</topic><topic>Covariance matrix</topic><topic>divergence</topic><topic>Entropy</topic><topic>Kullback-Leibler</topic><topic>mutual information</topic><topic>Particle filters</topic><topic>Particle measurements</topic><topic>Rényi</topic><topic>sensor management</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Aughenbaugh, J.M.</creatorcontrib><creatorcontrib>La Cour, B.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aughenbaugh, J.M.</au><au>La Cour, B.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Metric selection for information theoretic sensor management</atitle><btitle>2008 11th International Conference on Information Fusion</btitle><stitle>ICIF</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>3800730928</isbn><isbn>9783800730926</isbn><eisbn>9783000248832</eisbn><eisbn>3000248838</eisbn><abstract>Different information theoretic sensor management approaches are compared in a Bayesian target-tracking problem. Specifically, the performance using the expected Renyi divergence with different parameter values is compared theoretically and experimentally. Included is the special case in which the expected Renyi divergence is equal to the expected Kullback-Leibler divergence, which is also equivalent to both the mutual information and the expected change in differential entropy for this Bayesian updating problem. The example problem involves a single target moving in a circle, four bearing-only sensors, and two time-delay sensors. A particle filter based tracker is used.</abstract><pub>IEEE</pub><doi>10.1109/ICIF.2008.4632451</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 3800730928
ispartof 2008 11th International Conference on Information Fusion, 2008, p.1-8
issn
language eng
recordid cdi_ieee_primary_4632451
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Atmospheric measurements
Bayesian methods
Covariance matrix
divergence
Entropy
Kullback-Leibler
mutual information
Particle filters
Particle measurements
Rényi
sensor management
Target tracking
title Metric selection for information theoretic sensor management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Metric%20selection%20for%20information%20theoretic%20sensor%20management&rft.btitle=2008%2011th%20International%20Conference%20on%20Information%20Fusion&rft.au=Aughenbaugh,%20J.M.&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=3800730928&rft.isbn_list=9783800730926&rft_id=info:doi/10.1109/ICIF.2008.4632451&rft_dat=%3Cieee_6IE%3E4632451%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783000248832&rft.eisbn_list=3000248838&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4632451&rfr_iscdi=true