A novel fuzzy inferencing methodology for simulated car racing
This paper describes and further extends the fuzzy inferencing system which won the simulated car racing competition that was arranged as part of FuzzlEEE 2007 conference. The details of the winning non-stationary fuzzy controller and its results are presented. A novel approach to further improve th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1914 |
---|---|
container_issue | |
container_start_page | 1907 |
container_title | |
container_volume | |
creator | Duc Thang Ho Garibaldi, J.M. |
description | This paper describes and further extends the fuzzy inferencing system which won the simulated car racing competition that was arranged as part of FuzzlEEE 2007 conference. The details of the winning non-stationary fuzzy controller and its results are presented. A novel approach to further improve the performance of the winning controller is described and formalised. We term the new fuzzy inferencing method a dasia context-dependent fuzzy inference system psila. The concept of a dasia context-dependent fuzzy set psila that is utilised by the fuzzy system is introduced. Finally, a comparison between context-dependent fuzzy inference system and various existing techniques are carried out on the simulated car racing application. The results show a better performance for context-dependent fuzzy inference systems in stochastic circumstances. |
doi_str_mv | 10.1109/FUZZY.2008.4630630 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4630630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4630630</ieee_id><sourcerecordid>4630630</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-27837ced887dda8820d5830eb15f220ee04089e1eb94dceb8974d2a4add9dd143</originalsourceid><addsrcrecordid>eNo1T9tKw0AUXFHBWvMD-rI_kHj2ku7ZF6EUq0LBl_pgX8ome1JXcpFNKrRfb8Q6DAwDMwPD2K2ATAiw98u3zeY9kwCY6ZmCkWcssQaFlloLFBbO2fW_wdkFm4wtTE2O-oolff8JI3SucmMn7GHO2-6bal7tj8cDD21FkdoytDve0PDR-a7udgdedZH3odnXbiDPSxd5dL-hG3ZZubqn5KRTtl4-rhfP6er16WUxX6XBwpBKg8qU5BGN9w5Rgs9RARUir6QEItCAlgQVVvuSCrRGe-m08956L7Sasru_2UBE268YGhcP29N79QOh1Uxs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel fuzzy inferencing methodology for simulated car racing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Duc Thang Ho ; Garibaldi, J.M.</creator><creatorcontrib>Duc Thang Ho ; Garibaldi, J.M.</creatorcontrib><description>This paper describes and further extends the fuzzy inferencing system which won the simulated car racing competition that was arranged as part of FuzzlEEE 2007 conference. The details of the winning non-stationary fuzzy controller and its results are presented. A novel approach to further improve the performance of the winning controller is described and formalised. We term the new fuzzy inferencing method a dasia context-dependent fuzzy inference system psila. The concept of a dasia context-dependent fuzzy set psila that is utilised by the fuzzy system is introduced. Finally, a comparison between context-dependent fuzzy inference system and various existing techniques are carried out on the simulated car racing application. The results show a better performance for context-dependent fuzzy inference systems in stochastic circumstances.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1424418186</identifier><identifier>ISBN: 9781424418183</identifier><identifier>EISBN: 9781424418190</identifier><identifier>EISBN: 1424418194</identifier><identifier>DOI: 10.1109/FUZZY.2008.4630630</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Conferences ; Context-dependent Fuzzy Inference System (CDFIS) ; Context-dependent Fuzzy Sets (CDFS) ; Fuzzy Inference System (FIS) ; Fuzzy sets ; Fuzzy systems ; Non-stationary Fuzzy Inference System (NSFIS) ; Non-stationary Fuzzy Sets (NSFS) ; Probabilistic logic ; Stochastic processes ; Uncertainty</subject><ispartof>2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), 2008, p.1907-1914</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4630630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4630630$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duc Thang Ho</creatorcontrib><creatorcontrib>Garibaldi, J.M.</creatorcontrib><title>A novel fuzzy inferencing methodology for simulated car racing</title><title>2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence)</title><addtitle>FUZZY</addtitle><description>This paper describes and further extends the fuzzy inferencing system which won the simulated car racing competition that was arranged as part of FuzzlEEE 2007 conference. The details of the winning non-stationary fuzzy controller and its results are presented. A novel approach to further improve the performance of the winning controller is described and formalised. We term the new fuzzy inferencing method a dasia context-dependent fuzzy inference system psila. The concept of a dasia context-dependent fuzzy set psila that is utilised by the fuzzy system is introduced. Finally, a comparison between context-dependent fuzzy inference system and various existing techniques are carried out on the simulated car racing application. The results show a better performance for context-dependent fuzzy inference systems in stochastic circumstances.</description><subject>Acceleration</subject><subject>Conferences</subject><subject>Context-dependent Fuzzy Inference System (CDFIS)</subject><subject>Context-dependent Fuzzy Sets (CDFS)</subject><subject>Fuzzy Inference System (FIS)</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Non-stationary Fuzzy Inference System (NSFIS)</subject><subject>Non-stationary Fuzzy Sets (NSFS)</subject><subject>Probabilistic logic</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>1098-7584</issn><isbn>1424418186</isbn><isbn>9781424418183</isbn><isbn>9781424418190</isbn><isbn>1424418194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T9tKw0AUXFHBWvMD-rI_kHj2ku7ZF6EUq0LBl_pgX8ome1JXcpFNKrRfb8Q6DAwDMwPD2K2ATAiw98u3zeY9kwCY6ZmCkWcssQaFlloLFBbO2fW_wdkFm4wtTE2O-oolff8JI3SucmMn7GHO2-6bal7tj8cDD21FkdoytDve0PDR-a7udgdedZH3odnXbiDPSxd5dL-hG3ZZubqn5KRTtl4-rhfP6er16WUxX6XBwpBKg8qU5BGN9w5Rgs9RARUir6QEItCAlgQVVvuSCrRGe-m08956L7Sasru_2UBE268YGhcP29N79QOh1Uxs</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Duc Thang Ho</creator><creator>Garibaldi, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>A novel fuzzy inferencing methodology for simulated car racing</title><author>Duc Thang Ho ; Garibaldi, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-27837ced887dda8820d5830eb15f220ee04089e1eb94dceb8974d2a4add9dd143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Conferences</topic><topic>Context-dependent Fuzzy Inference System (CDFIS)</topic><topic>Context-dependent Fuzzy Sets (CDFS)</topic><topic>Fuzzy Inference System (FIS)</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Non-stationary Fuzzy Inference System (NSFIS)</topic><topic>Non-stationary Fuzzy Sets (NSFS)</topic><topic>Probabilistic logic</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Duc Thang Ho</creatorcontrib><creatorcontrib>Garibaldi, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duc Thang Ho</au><au>Garibaldi, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel fuzzy inferencing methodology for simulated car racing</atitle><btitle>2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence)</btitle><stitle>FUZZY</stitle><date>2008-06</date><risdate>2008</risdate><spage>1907</spage><epage>1914</epage><pages>1907-1914</pages><issn>1098-7584</issn><isbn>1424418186</isbn><isbn>9781424418183</isbn><eisbn>9781424418190</eisbn><eisbn>1424418194</eisbn><abstract>This paper describes and further extends the fuzzy inferencing system which won the simulated car racing competition that was arranged as part of FuzzlEEE 2007 conference. The details of the winning non-stationary fuzzy controller and its results are presented. A novel approach to further improve the performance of the winning controller is described and formalised. We term the new fuzzy inferencing method a dasia context-dependent fuzzy inference system psila. The concept of a dasia context-dependent fuzzy set psila that is utilised by the fuzzy system is introduced. Finally, a comparison between context-dependent fuzzy inference system and various existing techniques are carried out on the simulated car racing application. The results show a better performance for context-dependent fuzzy inference systems in stochastic circumstances.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2008.4630630</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), 2008, p.1907-1914 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_4630630 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Conferences Context-dependent Fuzzy Inference System (CDFIS) Context-dependent Fuzzy Sets (CDFS) Fuzzy Inference System (FIS) Fuzzy sets Fuzzy systems Non-stationary Fuzzy Inference System (NSFIS) Non-stationary Fuzzy Sets (NSFS) Probabilistic logic Stochastic processes Uncertainty |
title | A novel fuzzy inferencing methodology for simulated car racing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20fuzzy%20inferencing%20methodology%20for%20simulated%20car%20racing&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Duc%20Thang%20Ho&rft.date=2008-06&rft.spage=1907&rft.epage=1914&rft.pages=1907-1914&rft.issn=1098-7584&rft.isbn=1424418186&rft.isbn_list=9781424418183&rft_id=info:doi/10.1109/FUZZY.2008.4630630&rft_dat=%3Cieee_6IE%3E4630630%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418190&rft.eisbn_list=1424418194&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4630630&rfr_iscdi=true |