Hybrid Rule and Neural Network Based Framework for Ubiquitous Computing

One of most perspective techniques for sensing in ubiquitous computing systems is neural networks. But for a prior knowledge representation it is most appropriate to employ rule based techniques. So usage of hybrid intelligent systems based on combination of neural networks and rule based techniques...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gavrilov, A.V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 492
container_issue
container_start_page 488
container_title
container_volume 2
creator Gavrilov, A.V.
description One of most perspective techniques for sensing in ubiquitous computing systems is neural networks. But for a prior knowledge representation it is most appropriate to employ rule based techniques. So usage of hybrid intelligent systems based on combination of neural networks and rule based techniques seems perspective for development of smart environment. In this paper features of hybridization in smart environment are described and usage of technology of hybrid expert systems based on shell ESWin is proposed.
doi_str_mv 10.1109/NCM.2008.129
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4624191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4624191</ieee_id><sourcerecordid>4624191</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-9234b2f0c6816df62c639c097928d7796a2b7bdc4759b92b4c113e5b4fda35a13</originalsourceid><addsrcrecordid>eNotjr1OwzAURi2hStDSjY3FL5Dge53YuSNEtEUqRUJ0ruzYQYakKU4i1Ldv-ZmOvjN8OozdgEgBBN1tyucUhShSQLpgU6EV5VIiwoRNfzxhITVdsnnffwghgJQWhFdsuTraGBx_HRvPzd7xjR-jac4Yvrv4yR9M7x1fRNP63113kW9t-BrD0I09L7v2MA5h_37NJrVpej__54xtF49v5SpZvyyfyvt1EhDkkBDKzGItKlWAcrXCSkmqBOlzn9OalEGrrasynZMltFkFIH1us9oZmRuQM3b79xu897tDDK2Jx12mMAMCeQLxdUqZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Rule and Neural Network Based Framework for Ubiquitous Computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gavrilov, A.V.</creator><creatorcontrib>Gavrilov, A.V.</creatorcontrib><description>One of most perspective techniques for sensing in ubiquitous computing systems is neural networks. But for a prior knowledge representation it is most appropriate to employ rule based techniques. So usage of hybrid intelligent systems based on combination of neural networks and rule based techniques seems perspective for development of smart environment. In this paper features of hybridization in smart environment are described and usage of technology of hybrid expert systems based on shell ESWin is proposed.</description><identifier>ISBN: 0769533221</identifier><identifier>ISBN: 9780769533223</identifier><identifier>DOI: 10.1109/NCM.2008.129</identifier><identifier>LCCN: 2008928379</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Ferroelectric films ; Hybrid Intelligent Systems ; Knowledge based Systems ; Neural Networks ; Nonvolatile memory ; Random access memory ; Rules ; Sensors ; Smart Environment ; Ubiquitous Computing</subject><ispartof>2008 Fourth International Conference on Networked Computing and Advanced Information Management, 2008, Vol.2, p.488-492</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4624191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4624191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gavrilov, A.V.</creatorcontrib><title>Hybrid Rule and Neural Network Based Framework for Ubiquitous Computing</title><title>2008 Fourth International Conference on Networked Computing and Advanced Information Management</title><addtitle>NCM</addtitle><description>One of most perspective techniques for sensing in ubiquitous computing systems is neural networks. But for a prior knowledge representation it is most appropriate to employ rule based techniques. So usage of hybrid intelligent systems based on combination of neural networks and rule based techniques seems perspective for development of smart environment. In this paper features of hybridization in smart environment are described and usage of technology of hybrid expert systems based on shell ESWin is proposed.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Ferroelectric films</subject><subject>Hybrid Intelligent Systems</subject><subject>Knowledge based Systems</subject><subject>Neural Networks</subject><subject>Nonvolatile memory</subject><subject>Random access memory</subject><subject>Rules</subject><subject>Sensors</subject><subject>Smart Environment</subject><subject>Ubiquitous Computing</subject><isbn>0769533221</isbn><isbn>9780769533223</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjr1OwzAURi2hStDSjY3FL5Dge53YuSNEtEUqRUJ0ruzYQYakKU4i1Ldv-ZmOvjN8OozdgEgBBN1tyucUhShSQLpgU6EV5VIiwoRNfzxhITVdsnnffwghgJQWhFdsuTraGBx_HRvPzd7xjR-jac4Yvrv4yR9M7x1fRNP63113kW9t-BrD0I09L7v2MA5h_37NJrVpej__54xtF49v5SpZvyyfyvt1EhDkkBDKzGItKlWAcrXCSkmqBOlzn9OalEGrrasynZMltFkFIH1us9oZmRuQM3b79xu897tDDK2Jx12mMAMCeQLxdUqZ</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Gavrilov, A.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Hybrid Rule and Neural Network Based Framework for Ubiquitous Computing</title><author>Gavrilov, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-9234b2f0c6816df62c639c097928d7796a2b7bdc4759b92b4c113e5b4fda35a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Ferroelectric films</topic><topic>Hybrid Intelligent Systems</topic><topic>Knowledge based Systems</topic><topic>Neural Networks</topic><topic>Nonvolatile memory</topic><topic>Random access memory</topic><topic>Rules</topic><topic>Sensors</topic><topic>Smart Environment</topic><topic>Ubiquitous Computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Gavrilov, A.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gavrilov, A.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Rule and Neural Network Based Framework for Ubiquitous Computing</atitle><btitle>2008 Fourth International Conference on Networked Computing and Advanced Information Management</btitle><stitle>NCM</stitle><date>2008-09</date><risdate>2008</risdate><volume>2</volume><spage>488</spage><epage>492</epage><pages>488-492</pages><isbn>0769533221</isbn><isbn>9780769533223</isbn><abstract>One of most perspective techniques for sensing in ubiquitous computing systems is neural networks. But for a prior knowledge representation it is most appropriate to employ rule based techniques. So usage of hybrid intelligent systems based on combination of neural networks and rule based techniques seems perspective for development of smart environment. In this paper features of hybridization in smart environment are described and usage of technology of hybrid expert systems based on shell ESWin is proposed.</abstract><pub>IEEE</pub><doi>10.1109/NCM.2008.129</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769533221
ispartof 2008 Fourth International Conference on Networked Computing and Advanced Information Management, 2008, Vol.2, p.488-492
issn
language eng
recordid cdi_ieee_primary_4624191
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Artificial neural networks
Ferroelectric films
Hybrid Intelligent Systems
Knowledge based Systems
Neural Networks
Nonvolatile memory
Random access memory
Rules
Sensors
Smart Environment
Ubiquitous Computing
title Hybrid Rule and Neural Network Based Framework for Ubiquitous Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Rule%20and%20Neural%20Network%20Based%20Framework%20for%20Ubiquitous%20Computing&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Networked%20Computing%20and%20Advanced%20Information%20Management&rft.au=Gavrilov,%20A.V.&rft.date=2008-09&rft.volume=2&rft.spage=488&rft.epage=492&rft.pages=488-492&rft.isbn=0769533221&rft.isbn_list=9780769533223&rft_id=info:doi/10.1109/NCM.2008.129&rft_dat=%3Cieee_6IE%3E4624191%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4624191&rfr_iscdi=true