A Database for the Analysis of Program Change Patterns

Software repositories contain an enormous amount of information regarding the evolution of any large software system. In our experiments we choose the dataset of the freely available Mozilla CVS repository. We downloaded 9552 program files (C++), extracted the CVS log data, and extracted the Mozilla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahsan, S.N., Ferzund, J., Wotawa, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 32
container_title
container_volume 2
creator Ahsan, S.N.
Ferzund, J.
Wotawa, F.
description Software repositories contain an enormous amount of information regarding the evolution of any large software system. In our experiments we choose the dataset of the freely available Mozilla CVS repository. We downloaded 9552 program files (C++), extracted the CVS log data, and extracted the Mozilla bugs information from the Bugzilla database. From these sources we extracted the program file change data and used a database for storing the extracted data. We further used this database for the analysis of program file changes in order to find change patterns. We apply an approach on the database that allows us to identify the different types of change transactions like bug fixing, clean, bug introducing and bug fix-introducing transactions. We further use the database to find the program file change distribution. Furthermore we use the probability of bug introducing and bug fix-introducing changes to identify the source file as being risky or not for further changes. Such information is not only useful for developers but also for software managers in order to assign resources, e.g., for testing.
doi_str_mv 10.1109/NCM.2008.179
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4624113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4624113</ieee_id><sourcerecordid>4624113</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4ddaba23b37b3fbf93862d4c0af238305c3c70f3d733e1ea468c76f99ce82b9f3</originalsourceid><addsrcrecordid>eNotzL1OwzAUQGFLqBK0dGNj8QskXPsmtu8YhZ8iFdqhzJWTXLdBbYLsLH17QDAd6QyfEHcKcqWAHt7rt1wDuFxZuhJzsIZKRK3VTMx_P2mHlq7FMqVPAFBkLJC-EaaSj37yjU8swxjldGRZDf50SX2SY5DbOB6iP8v66IcDy62fJo5DuhWz4E-Jl_9diI_np129ytabl9e6Wme9suWUFV33Q2ts0DYYmkDojO6KFnzQ6BDKFlsLATuLyIp9YVxrTSBq2emGAi7E_Z_bM_P-K_ZnHy_7wuhCKcRvKsVEfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Database for the Analysis of Program Change Patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahsan, S.N. ; Ferzund, J. ; Wotawa, F.</creator><creatorcontrib>Ahsan, S.N. ; Ferzund, J. ; Wotawa, F.</creatorcontrib><description>Software repositories contain an enormous amount of information regarding the evolution of any large software system. In our experiments we choose the dataset of the freely available Mozilla CVS repository. We downloaded 9552 program files (C++), extracted the CVS log data, and extracted the Mozilla bugs information from the Bugzilla database. From these sources we extracted the program file change data and used a database for storing the extracted data. We further used this database for the analysis of program file changes in order to find change patterns. We apply an approach on the database that allows us to identify the different types of change transactions like bug fixing, clean, bug introducing and bug fix-introducing transactions. We further use the database to find the program file change distribution. Furthermore we use the probability of bug introducing and bug fix-introducing changes to identify the source file as being risky or not for further changes. Such information is not only useful for developers but also for software managers in order to assign resources, e.g., for testing.</description><identifier>ISBN: 0769533221</identifier><identifier>ISBN: 9780769533223</identifier><identifier>DOI: 10.1109/NCM.2008.179</identifier><identifier>LCCN: 2008928379</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer bugs ; Data mining ; Evolution (biology) ; Image color analysis ; Predictive models ; Software</subject><ispartof>2008 Fourth International Conference on Networked Computing and Advanced Information Management, 2008, Vol.2, p.32-39</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4624113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4624113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahsan, S.N.</creatorcontrib><creatorcontrib>Ferzund, J.</creatorcontrib><creatorcontrib>Wotawa, F.</creatorcontrib><title>A Database for the Analysis of Program Change Patterns</title><title>2008 Fourth International Conference on Networked Computing and Advanced Information Management</title><addtitle>NCM</addtitle><description>Software repositories contain an enormous amount of information regarding the evolution of any large software system. In our experiments we choose the dataset of the freely available Mozilla CVS repository. We downloaded 9552 program files (C++), extracted the CVS log data, and extracted the Mozilla bugs information from the Bugzilla database. From these sources we extracted the program file change data and used a database for storing the extracted data. We further used this database for the analysis of program file changes in order to find change patterns. We apply an approach on the database that allows us to identify the different types of change transactions like bug fixing, clean, bug introducing and bug fix-introducing transactions. We further use the database to find the program file change distribution. Furthermore we use the probability of bug introducing and bug fix-introducing changes to identify the source file as being risky or not for further changes. Such information is not only useful for developers but also for software managers in order to assign resources, e.g., for testing.</description><subject>Computer bugs</subject><subject>Data mining</subject><subject>Evolution (biology)</subject><subject>Image color analysis</subject><subject>Predictive models</subject><subject>Software</subject><isbn>0769533221</isbn><isbn>9780769533223</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzL1OwzAUQGFLqBK0dGNj8QskXPsmtu8YhZ8iFdqhzJWTXLdBbYLsLH17QDAd6QyfEHcKcqWAHt7rt1wDuFxZuhJzsIZKRK3VTMx_P2mHlq7FMqVPAFBkLJC-EaaSj37yjU8swxjldGRZDf50SX2SY5DbOB6iP8v66IcDy62fJo5DuhWz4E-Jl_9diI_np129ytabl9e6Wme9suWUFV33Q2ts0DYYmkDojO6KFnzQ6BDKFlsLATuLyIp9YVxrTSBq2emGAi7E_Z_bM_P-K_ZnHy_7wuhCKcRvKsVEfA</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Ahsan, S.N.</creator><creator>Ferzund, J.</creator><creator>Wotawa, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>A Database for the Analysis of Program Change Patterns</title><author>Ahsan, S.N. ; Ferzund, J. ; Wotawa, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4ddaba23b37b3fbf93862d4c0af238305c3c70f3d733e1ea468c76f99ce82b9f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer bugs</topic><topic>Data mining</topic><topic>Evolution (biology)</topic><topic>Image color analysis</topic><topic>Predictive models</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahsan, S.N.</creatorcontrib><creatorcontrib>Ferzund, J.</creatorcontrib><creatorcontrib>Wotawa, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahsan, S.N.</au><au>Ferzund, J.</au><au>Wotawa, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Database for the Analysis of Program Change Patterns</atitle><btitle>2008 Fourth International Conference on Networked Computing and Advanced Information Management</btitle><stitle>NCM</stitle><date>2008-09</date><risdate>2008</risdate><volume>2</volume><spage>32</spage><epage>39</epage><pages>32-39</pages><isbn>0769533221</isbn><isbn>9780769533223</isbn><abstract>Software repositories contain an enormous amount of information regarding the evolution of any large software system. In our experiments we choose the dataset of the freely available Mozilla CVS repository. We downloaded 9552 program files (C++), extracted the CVS log data, and extracted the Mozilla bugs information from the Bugzilla database. From these sources we extracted the program file change data and used a database for storing the extracted data. We further used this database for the analysis of program file changes in order to find change patterns. We apply an approach on the database that allows us to identify the different types of change transactions like bug fixing, clean, bug introducing and bug fix-introducing transactions. We further use the database to find the program file change distribution. Furthermore we use the probability of bug introducing and bug fix-introducing changes to identify the source file as being risky or not for further changes. Such information is not only useful for developers but also for software managers in order to assign resources, e.g., for testing.</abstract><pub>IEEE</pub><doi>10.1109/NCM.2008.179</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769533221
ispartof 2008 Fourth International Conference on Networked Computing and Advanced Information Management, 2008, Vol.2, p.32-39
issn
language eng
recordid cdi_ieee_primary_4624113
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer bugs
Data mining
Evolution (biology)
Image color analysis
Predictive models
Software
title A Database for the Analysis of Program Change Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Database%20for%20the%20Analysis%20of%20Program%20Change%20Patterns&rft.btitle=2008%20Fourth%20International%20Conference%20on%20Networked%20Computing%20and%20Advanced%20Information%20Management&rft.au=Ahsan,%20S.N.&rft.date=2008-09&rft.volume=2&rft.spage=32&rft.epage=39&rft.pages=32-39&rft.isbn=0769533221&rft.isbn_list=9780769533223&rft_id=info:doi/10.1109/NCM.2008.179&rft_dat=%3Cieee_6IE%3E4624113%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4624113&rfr_iscdi=true