A new pedestrian dataset for supervised learning
This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | |
container_start_page | 373 |
container_title | |
container_volume | |
creator | Overett, Gary Petersson, Lars Brewer, Nathan Andersson, Lars Pettersson, Niklas |
description | This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks. |
doi_str_mv | 10.1109/IVS.2008.4621297 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4621297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4621297</ieee_id><sourcerecordid>4621297</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1327-c2822e7634bca052aaee5239b0330a914a86026a5c87789347b0d3fb22040cfe3</originalsourceid><addsrcrecordid>eNpFj8tKw0AUQMcXmFb3gpv5gcQ7d97LUqwWCi58bMtNciMjNZaZqPj3Liy4OosDB44QVwoapSDerF8eGwQIjXGoMPojMVMGjUHroj8WFTqDtUdlTv5FiKeiUlGrGmzw52JWyhuAtYiqErCQI3_LPfdcppxolD1NVHiSw0eW5XPP-SsV7uWOKY9pfL0QZwPtCl8eOBfPq9un5X29ebhbLxebOimNvu4wILJ32rQdgUUiZos6tqA1UFSGggN0ZLvgfYja-BZ6PbSIYKAbWM_F9V83MfN2n9M75Z_tYVv_AqP7RcU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new pedestrian dataset for supervised learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Overett, Gary ; Petersson, Lars ; Brewer, Nathan ; Andersson, Lars ; Pettersson, Niklas</creator><creatorcontrib>Overett, Gary ; Petersson, Lars ; Brewer, Nathan ; Andersson, Lars ; Pettersson, Niklas</creatorcontrib><description>This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 1424425689</identifier><identifier>ISBN: 9781424425686</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1424425697</identifier><identifier>EISBN: 9781424425693</identifier><identifier>DOI: 10.1109/IVS.2008.4621297</identifier><language>eng</language><publisher>IEEE</publisher><subject>Vehicles</subject><ispartof>2008 IEEE Intelligent Vehicles Symposium, 2008, p.373-378</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4621297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4621297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Overett, Gary</creatorcontrib><creatorcontrib>Petersson, Lars</creatorcontrib><creatorcontrib>Brewer, Nathan</creatorcontrib><creatorcontrib>Andersson, Lars</creatorcontrib><creatorcontrib>Pettersson, Niklas</creatorcontrib><title>A new pedestrian dataset for supervised learning</title><title>2008 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.</description><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>1424425689</isbn><isbn>9781424425686</isbn><isbn>1424425697</isbn><isbn>9781424425693</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8tKw0AUQMcXmFb3gpv5gcQ7d97LUqwWCi58bMtNciMjNZaZqPj3Liy4OosDB44QVwoapSDerF8eGwQIjXGoMPojMVMGjUHroj8WFTqDtUdlTv5FiKeiUlGrGmzw52JWyhuAtYiqErCQI3_LPfdcppxolD1NVHiSw0eW5XPP-SsV7uWOKY9pfL0QZwPtCl8eOBfPq9un5X29ebhbLxebOimNvu4wILJ32rQdgUUiZos6tqA1UFSGggN0ZLvgfYja-BZ6PbSIYKAbWM_F9V83MfN2n9M75Z_tYVv_AqP7RcU</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Overett, Gary</creator><creator>Petersson, Lars</creator><creator>Brewer, Nathan</creator><creator>Andersson, Lars</creator><creator>Pettersson, Niklas</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>A new pedestrian dataset for supervised learning</title><author>Overett, Gary ; Petersson, Lars ; Brewer, Nathan ; Andersson, Lars ; Pettersson, Niklas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1327-c2822e7634bca052aaee5239b0330a914a86026a5c87789347b0d3fb22040cfe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Overett, Gary</creatorcontrib><creatorcontrib>Petersson, Lars</creatorcontrib><creatorcontrib>Brewer, Nathan</creatorcontrib><creatorcontrib>Andersson, Lars</creatorcontrib><creatorcontrib>Pettersson, Niklas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Overett, Gary</au><au>Petersson, Lars</au><au>Brewer, Nathan</au><au>Andersson, Lars</au><au>Pettersson, Niklas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new pedestrian dataset for supervised learning</atitle><btitle>2008 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2008-06</date><risdate>2008</risdate><spage>373</spage><epage>378</epage><pages>373-378</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>1424425689</isbn><isbn>9781424425686</isbn><eisbn>1424425697</eisbn><eisbn>9781424425693</eisbn><abstract>This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2008.4621297</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1931-0587 |
ispartof | 2008 IEEE Intelligent Vehicles Symposium, 2008, p.373-378 |
issn | 1931-0587 2642-7214 |
language | eng |
recordid | cdi_ieee_primary_4621297 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Vehicles |
title | A new pedestrian dataset for supervised learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20pedestrian%20dataset%20for%20supervised%20learning&rft.btitle=2008%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Overett,%20Gary&rft.date=2008-06&rft.spage=373&rft.epage=378&rft.pages=373-378&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=1424425689&rft.isbn_list=9781424425686&rft_id=info:doi/10.1109/IVS.2008.4621297&rft_dat=%3Cieee_6IE%3E4621297%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425697&rft.eisbn_list=9781424425693&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4621297&rfr_iscdi=true |