A new pedestrian dataset for supervised learning

This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Overett, Gary, Petersson, Lars, Brewer, Nathan, Andersson, Lars, Pettersson, Niklas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue
container_start_page 373
container_title
container_volume
creator Overett, Gary
Petersson, Lars
Brewer, Nathan
Andersson, Lars
Pettersson, Niklas
description This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.
doi_str_mv 10.1109/IVS.2008.4621297
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4621297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4621297</ieee_id><sourcerecordid>4621297</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1327-c2822e7634bca052aaee5239b0330a914a86026a5c87789347b0d3fb22040cfe3</originalsourceid><addsrcrecordid>eNpFj8tKw0AUQMcXmFb3gpv5gcQ7d97LUqwWCi58bMtNciMjNZaZqPj3Liy4OosDB44QVwoapSDerF8eGwQIjXGoMPojMVMGjUHroj8WFTqDtUdlTv5FiKeiUlGrGmzw52JWyhuAtYiqErCQI3_LPfdcppxolD1NVHiSw0eW5XPP-SsV7uWOKY9pfL0QZwPtCl8eOBfPq9un5X29ebhbLxebOimNvu4wILJ32rQdgUUiZos6tqA1UFSGggN0ZLvgfYja-BZ6PbSIYKAbWM_F9V83MfN2n9M75Z_tYVv_AqP7RcU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new pedestrian dataset for supervised learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Overett, Gary ; Petersson, Lars ; Brewer, Nathan ; Andersson, Lars ; Pettersson, Niklas</creator><creatorcontrib>Overett, Gary ; Petersson, Lars ; Brewer, Nathan ; Andersson, Lars ; Pettersson, Niklas</creatorcontrib><description>This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 1424425689</identifier><identifier>ISBN: 9781424425686</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1424425697</identifier><identifier>EISBN: 9781424425693</identifier><identifier>DOI: 10.1109/IVS.2008.4621297</identifier><language>eng</language><publisher>IEEE</publisher><subject>Vehicles</subject><ispartof>2008 IEEE Intelligent Vehicles Symposium, 2008, p.373-378</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4621297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4621297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Overett, Gary</creatorcontrib><creatorcontrib>Petersson, Lars</creatorcontrib><creatorcontrib>Brewer, Nathan</creatorcontrib><creatorcontrib>Andersson, Lars</creatorcontrib><creatorcontrib>Pettersson, Niklas</creatorcontrib><title>A new pedestrian dataset for supervised learning</title><title>2008 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.</description><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>1424425689</isbn><isbn>9781424425686</isbn><isbn>1424425697</isbn><isbn>9781424425693</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8tKw0AUQMcXmFb3gpv5gcQ7d97LUqwWCi58bMtNciMjNZaZqPj3Liy4OosDB44QVwoapSDerF8eGwQIjXGoMPojMVMGjUHroj8WFTqDtUdlTv5FiKeiUlGrGmzw52JWyhuAtYiqErCQI3_LPfdcppxolD1NVHiSw0eW5XPP-SsV7uWOKY9pfL0QZwPtCl8eOBfPq9un5X29ebhbLxebOimNvu4wILJ32rQdgUUiZos6tqA1UFSGggN0ZLvgfYja-BZ6PbSIYKAbWM_F9V83MfN2n9M75Z_tYVv_AqP7RcU</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Overett, Gary</creator><creator>Petersson, Lars</creator><creator>Brewer, Nathan</creator><creator>Andersson, Lars</creator><creator>Pettersson, Niklas</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>A new pedestrian dataset for supervised learning</title><author>Overett, Gary ; Petersson, Lars ; Brewer, Nathan ; Andersson, Lars ; Pettersson, Niklas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1327-c2822e7634bca052aaee5239b0330a914a86026a5c87789347b0d3fb22040cfe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Overett, Gary</creatorcontrib><creatorcontrib>Petersson, Lars</creatorcontrib><creatorcontrib>Brewer, Nathan</creatorcontrib><creatorcontrib>Andersson, Lars</creatorcontrib><creatorcontrib>Pettersson, Niklas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Overett, Gary</au><au>Petersson, Lars</au><au>Brewer, Nathan</au><au>Andersson, Lars</au><au>Pettersson, Niklas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new pedestrian dataset for supervised learning</atitle><btitle>2008 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2008-06</date><risdate>2008</risdate><spage>373</spage><epage>378</epage><pages>373-378</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>1424425689</isbn><isbn>9781424425686</isbn><eisbn>1424425697</eisbn><eisbn>9781424425693</eisbn><abstract>This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods. Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2008.4621297</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-0587
ispartof 2008 IEEE Intelligent Vehicles Symposium, 2008, p.373-378
issn 1931-0587
2642-7214
language eng
recordid cdi_ieee_primary_4621297
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Vehicles
title A new pedestrian dataset for supervised learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20pedestrian%20dataset%20for%20supervised%20learning&rft.btitle=2008%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Overett,%20Gary&rft.date=2008-06&rft.spage=373&rft.epage=378&rft.pages=373-378&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=1424425689&rft.isbn_list=9781424425686&rft_id=info:doi/10.1109/IVS.2008.4621297&rft_dat=%3Cieee_6IE%3E4621297%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425697&rft.eisbn_list=9781424425693&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4621297&rfr_iscdi=true