Neural Net Water Level Trend Prediction and Dynamic Water Level Sampling Frequency

We have used neural network water level trend prediction (NNWLTP) in support of a water level sensing project. The NNWLTP approach allows dynamic change in water level sampling frequency, which will reduce power consumption and extend battery life in energy constrained devices. This paper deals prim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sweeney, S.P., Sehwan Yoo, Chi, A., Lin, F., Taikyeong Jeong, Sengphil Hong, Fernald, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 29
container_title
container_volume
creator Sweeney, S.P.
Sehwan Yoo
Chi, A.
Lin, F.
Taikyeong Jeong
Sengphil Hong
Fernald, S.
description We have used neural network water level trend prediction (NNWLTP) in support of a water level sensing project. The NNWLTP approach allows dynamic change in water level sampling frequency, which will reduce power consumption and extend battery life in energy constrained devices. This paper deals primarily with the NNWLTP, which would allow sampling frequency change commands to be transmitted to the sensors when a transition or turning point was detected.
doi_str_mv 10.1109/SNPD.2008.132
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4617344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4617344</ieee_id><sourcerecordid>4617344</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d488e0ef5c9741b1ab15fd397a7f411e009c9038377d79aa3722b3b15d0231893</originalsourceid><addsrcrecordid>eNpVjMFKw0AURQekoNYsXbmZH0idNy_JzCyltVYIsdiKyzLJvMhIEuskFfL3RnTj3Vwu53AZuwaxABDmdldsVwsphF4AyjMWGaWFykyKMkMzY5c_yMhMQHrOor5_F1PQTExfsOeCTsE2vKCBv9qBAs_pixq-D9Q5vg3kfDX4j47baa7Gzra--ifubHtsfPfG14E-T9RV4xWb1bbpKfrrOXtZ3--Xmzh_enhc3uWxB5UOsUu0JkF1WhmVQAm2hLR2aJRVdQJAQpjKCNSolFPGWlRSljhJTkgEbXDObn5_PREdjsG3NoyHJAOFSYLflOpOtA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural Net Water Level Trend Prediction and Dynamic Water Level Sampling Frequency</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sweeney, S.P. ; Sehwan Yoo ; Chi, A. ; Lin, F. ; Taikyeong Jeong ; Sengphil Hong ; Fernald, S.</creator><creatorcontrib>Sweeney, S.P. ; Sehwan Yoo ; Chi, A. ; Lin, F. ; Taikyeong Jeong ; Sengphil Hong ; Fernald, S.</creatorcontrib><description>We have used neural network water level trend prediction (NNWLTP) in support of a water level sensing project. The NNWLTP approach allows dynamic change in water level sampling frequency, which will reduce power consumption and extend battery life in energy constrained devices. This paper deals primarily with the NNWLTP, which would allow sampling frequency change commands to be transmitted to the sensors when a transition or turning point was detected.</description><identifier>ISBN: 9780769532639</identifier><identifier>ISBN: 0769532632</identifier><identifier>DOI: 10.1109/SNPD.2008.132</identifier><identifier>LCCN: 2008926015</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural network ; Artificial neural networks ; Digital filters ; Java ; Sensors ; Time series analysis ; Trend prediction ; Turning ; Water level prediction ; Wireless sensor networks</subject><ispartof>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008, p.29-37</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4617344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4617344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sweeney, S.P.</creatorcontrib><creatorcontrib>Sehwan Yoo</creatorcontrib><creatorcontrib>Chi, A.</creatorcontrib><creatorcontrib>Lin, F.</creatorcontrib><creatorcontrib>Taikyeong Jeong</creatorcontrib><creatorcontrib>Sengphil Hong</creatorcontrib><creatorcontrib>Fernald, S.</creatorcontrib><title>Neural Net Water Level Trend Prediction and Dynamic Water Level Sampling Frequency</title><title>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing</title><addtitle>SNPD</addtitle><description>We have used neural network water level trend prediction (NNWLTP) in support of a water level sensing project. The NNWLTP approach allows dynamic change in water level sampling frequency, which will reduce power consumption and extend battery life in energy constrained devices. This paper deals primarily with the NNWLTP, which would allow sampling frequency change commands to be transmitted to the sensors when a transition or turning point was detected.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Digital filters</subject><subject>Java</subject><subject>Sensors</subject><subject>Time series analysis</subject><subject>Trend prediction</subject><subject>Turning</subject><subject>Water level prediction</subject><subject>Wireless sensor networks</subject><isbn>9780769532639</isbn><isbn>0769532632</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjMFKw0AURQekoNYsXbmZH0idNy_JzCyltVYIsdiKyzLJvMhIEuskFfL3RnTj3Vwu53AZuwaxABDmdldsVwsphF4AyjMWGaWFykyKMkMzY5c_yMhMQHrOor5_F1PQTExfsOeCTsE2vKCBv9qBAs_pixq-D9Q5vg3kfDX4j47baa7Gzra--ifubHtsfPfG14E-T9RV4xWb1bbpKfrrOXtZ3--Xmzh_enhc3uWxB5UOsUu0JkF1WhmVQAm2hLR2aJRVdQJAQpjKCNSolFPGWlRSljhJTkgEbXDObn5_PREdjsG3NoyHJAOFSYLflOpOtA</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Sweeney, S.P.</creator><creator>Sehwan Yoo</creator><creator>Chi, A.</creator><creator>Lin, F.</creator><creator>Taikyeong Jeong</creator><creator>Sengphil Hong</creator><creator>Fernald, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Neural Net Water Level Trend Prediction and Dynamic Water Level Sampling Frequency</title><author>Sweeney, S.P. ; Sehwan Yoo ; Chi, A. ; Lin, F. ; Taikyeong Jeong ; Sengphil Hong ; Fernald, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d488e0ef5c9741b1ab15fd397a7f411e009c9038377d79aa3722b3b15d0231893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Digital filters</topic><topic>Java</topic><topic>Sensors</topic><topic>Time series analysis</topic><topic>Trend prediction</topic><topic>Turning</topic><topic>Water level prediction</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sweeney, S.P.</creatorcontrib><creatorcontrib>Sehwan Yoo</creatorcontrib><creatorcontrib>Chi, A.</creatorcontrib><creatorcontrib>Lin, F.</creatorcontrib><creatorcontrib>Taikyeong Jeong</creatorcontrib><creatorcontrib>Sengphil Hong</creatorcontrib><creatorcontrib>Fernald, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sweeney, S.P.</au><au>Sehwan Yoo</au><au>Chi, A.</au><au>Lin, F.</au><au>Taikyeong Jeong</au><au>Sengphil Hong</au><au>Fernald, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural Net Water Level Trend Prediction and Dynamic Water Level Sampling Frequency</atitle><btitle>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing</btitle><stitle>SNPD</stitle><date>2008-08</date><risdate>2008</risdate><spage>29</spage><epage>37</epage><pages>29-37</pages><isbn>9780769532639</isbn><isbn>0769532632</isbn><abstract>We have used neural network water level trend prediction (NNWLTP) in support of a water level sensing project. The NNWLTP approach allows dynamic change in water level sampling frequency, which will reduce power consumption and extend battery life in energy constrained devices. This paper deals primarily with the NNWLTP, which would allow sampling frequency change commands to be transmitted to the sensors when a transition or turning point was detected.</abstract><pub>IEEE</pub><doi>10.1109/SNPD.2008.132</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769532639
ispartof 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008, p.29-37
issn
language eng
recordid cdi_ieee_primary_4617344
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural network
Artificial neural networks
Digital filters
Java
Sensors
Time series analysis
Trend prediction
Turning
Water level prediction
Wireless sensor networks
title Neural Net Water Level Trend Prediction and Dynamic Water Level Sampling Frequency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20Net%20Water%20Level%20Trend%20Prediction%20and%20Dynamic%20Water%20Level%20Sampling%20Frequency&rft.btitle=2008%20Ninth%20ACIS%20International%20Conference%20on%20Software%20Engineering,%20Artificial%20Intelligence,%20Networking,%20and%20Parallel/Distributed%20Computing&rft.au=Sweeney,%20S.P.&rft.date=2008-08&rft.spage=29&rft.epage=37&rft.pages=29-37&rft.isbn=9780769532639&rft.isbn_list=0769532632&rft_id=info:doi/10.1109/SNPD.2008.132&rft_dat=%3Cieee_6IE%3E4617344%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4617344&rfr_iscdi=true