Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications

The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Polash, B., Huq, H.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 61
container_title
container_volume
creator Polash, B.
Huq, H.F.
description The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT.
doi_str_mv 10.1109/MWSCAS.2008.4616736
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4616736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4616736</ieee_id><sourcerecordid>4616736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bd8cee1a0c63559b5a49d10f353c3618ef42db438415266d0cba12013315d8a63</originalsourceid><addsrcrecordid>eNo1kF1rwjAYRrMvmDp_gTf5A-3y5qvJpRR1A3WwOnYpaZNARm2k6S789-uYu3o4HDgXD0ILIDkA0c-7z6pcVjklROVcgiyYvEFT4JRzOpK4RRMQQmVMaX2H5rpQ_07y-1_HR1dw-YimKX0RQlkBeoLel51pL0NoTItP0boWR49L09exw3vTxeG7dngdXGvxynvXDPjQmy6FNMQ-YR97vF_tKmzO53ZsDCF26Qk9eNMmN7_uDH2sV4fyJdu-bV7L5TYLUIghq61qnANDGsmE0LUwXFsgngnWMAnKeU5tzZniIKiUljS1AUqAMRBWGclmaPHXDc6547kPJ9Nfjtdv2A9WVlPJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Polash, B. ; Huq, H.F.</creator><creatorcontrib>Polash, B. ; Huq, H.F.</creatorcontrib><description>The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT.</description><identifier>ISSN: 1548-3746</identifier><identifier>ISBN: 9781424421664</identifier><identifier>ISBN: 1424421667</identifier><identifier>EISSN: 1558-3899</identifier><identifier>EISBN: 1424421675</identifier><identifier>EISBN: 9781424421671</identifier><identifier>DOI: 10.1109/MWSCAS.2008.4616736</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Carbon nanotubes ; CNTFETs ; Electron tubes ; Equations ; Logic gates ; Mathematical model</subject><ispartof>2008 51st Midwest Symposium on Circuits and Systems, 2008, p.61-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4616736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4616736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Polash, B.</creatorcontrib><creatorcontrib>Huq, H.F.</creatorcontrib><title>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</title><title>2008 51st Midwest Symposium on Circuits and Systems</title><addtitle>MWSCAS</addtitle><description>The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT.</description><subject>Analytical models</subject><subject>Carbon nanotubes</subject><subject>CNTFETs</subject><subject>Electron tubes</subject><subject>Equations</subject><subject>Logic gates</subject><subject>Mathematical model</subject><issn>1548-3746</issn><issn>1558-3899</issn><isbn>9781424421664</isbn><isbn>1424421667</isbn><isbn>1424421675</isbn><isbn>9781424421671</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kF1rwjAYRrMvmDp_gTf5A-3y5qvJpRR1A3WwOnYpaZNARm2k6S789-uYu3o4HDgXD0ILIDkA0c-7z6pcVjklROVcgiyYvEFT4JRzOpK4RRMQQmVMaX2H5rpQ_07y-1_HR1dw-YimKX0RQlkBeoLel51pL0NoTItP0boWR49L09exw3vTxeG7dngdXGvxynvXDPjQmy6FNMQ-YR97vF_tKmzO53ZsDCF26Qk9eNMmN7_uDH2sV4fyJdu-bV7L5TYLUIghq61qnANDGsmE0LUwXFsgngnWMAnKeU5tzZniIKiUljS1AUqAMRBWGclmaPHXDc6547kPJ9Nfjtdv2A9WVlPJ</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Polash, B.</creator><creator>Huq, H.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200808</creationdate><title>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</title><author>Polash, B. ; Huq, H.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bd8cee1a0c63559b5a49d10f353c3618ef42db438415266d0cba12013315d8a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical models</topic><topic>Carbon nanotubes</topic><topic>CNTFETs</topic><topic>Electron tubes</topic><topic>Equations</topic><topic>Logic gates</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Polash, B.</creatorcontrib><creatorcontrib>Huq, H.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Polash, B.</au><au>Huq, H.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</atitle><btitle>2008 51st Midwest Symposium on Circuits and Systems</btitle><stitle>MWSCAS</stitle><date>2008-08</date><risdate>2008</risdate><spage>61</spage><epage>64</epage><pages>61-64</pages><issn>1548-3746</issn><eissn>1558-3899</eissn><isbn>9781424421664</isbn><isbn>1424421667</isbn><eisbn>1424421675</eisbn><eisbn>9781424421671</eisbn><abstract>The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.2008.4616736</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-3746
ispartof 2008 51st Midwest Symposium on Circuits and Systems, 2008, p.61-64
issn 1548-3746
1558-3899
language eng
recordid cdi_ieee_primary_4616736
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Carbon nanotubes
CNTFETs
Electron tubes
Equations
Logic gates
Mathematical model
title Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analytical%20model%20of%20Carbon%20Nanotube%20Field%20Effect%20Transistors%20for%20NEMS%20applications&rft.btitle=2008%2051st%20Midwest%20Symposium%20on%20Circuits%20and%20Systems&rft.au=Polash,%20B.&rft.date=2008-08&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.issn=1548-3746&rft.eissn=1558-3899&rft.isbn=9781424421664&rft.isbn_list=1424421667&rft_id=info:doi/10.1109/MWSCAS.2008.4616736&rft_dat=%3Cieee_6IE%3E4616736%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421675&rft.eisbn_list=9781424421671&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4616736&rfr_iscdi=true