Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications
The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An an...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | |
container_volume | |
creator | Polash, B. Huq, H.F. |
description | The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT. |
doi_str_mv | 10.1109/MWSCAS.2008.4616736 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4616736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4616736</ieee_id><sourcerecordid>4616736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bd8cee1a0c63559b5a49d10f353c3618ef42db438415266d0cba12013315d8a63</originalsourceid><addsrcrecordid>eNo1kF1rwjAYRrMvmDp_gTf5A-3y5qvJpRR1A3WwOnYpaZNARm2k6S789-uYu3o4HDgXD0ILIDkA0c-7z6pcVjklROVcgiyYvEFT4JRzOpK4RRMQQmVMaX2H5rpQ_07y-1_HR1dw-YimKX0RQlkBeoLel51pL0NoTItP0boWR49L09exw3vTxeG7dngdXGvxynvXDPjQmy6FNMQ-YR97vF_tKmzO53ZsDCF26Qk9eNMmN7_uDH2sV4fyJdu-bV7L5TYLUIghq61qnANDGsmE0LUwXFsgngnWMAnKeU5tzZniIKiUljS1AUqAMRBWGclmaPHXDc6547kPJ9Nfjtdv2A9WVlPJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Polash, B. ; Huq, H.F.</creator><creatorcontrib>Polash, B. ; Huq, H.F.</creatorcontrib><description>The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT.</description><identifier>ISSN: 1548-3746</identifier><identifier>ISBN: 9781424421664</identifier><identifier>ISBN: 1424421667</identifier><identifier>EISSN: 1558-3899</identifier><identifier>EISBN: 1424421675</identifier><identifier>EISBN: 9781424421671</identifier><identifier>DOI: 10.1109/MWSCAS.2008.4616736</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Carbon nanotubes ; CNTFETs ; Electron tubes ; Equations ; Logic gates ; Mathematical model</subject><ispartof>2008 51st Midwest Symposium on Circuits and Systems, 2008, p.61-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4616736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4616736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Polash, B.</creatorcontrib><creatorcontrib>Huq, H.F.</creatorcontrib><title>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</title><title>2008 51st Midwest Symposium on Circuits and Systems</title><addtitle>MWSCAS</addtitle><description>The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT.</description><subject>Analytical models</subject><subject>Carbon nanotubes</subject><subject>CNTFETs</subject><subject>Electron tubes</subject><subject>Equations</subject><subject>Logic gates</subject><subject>Mathematical model</subject><issn>1548-3746</issn><issn>1558-3899</issn><isbn>9781424421664</isbn><isbn>1424421667</isbn><isbn>1424421675</isbn><isbn>9781424421671</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kF1rwjAYRrMvmDp_gTf5A-3y5qvJpRR1A3WwOnYpaZNARm2k6S789-uYu3o4HDgXD0ILIDkA0c-7z6pcVjklROVcgiyYvEFT4JRzOpK4RRMQQmVMaX2H5rpQ_07y-1_HR1dw-YimKX0RQlkBeoLel51pL0NoTItP0boWR49L09exw3vTxeG7dngdXGvxynvXDPjQmy6FNMQ-YR97vF_tKmzO53ZsDCF26Qk9eNMmN7_uDH2sV4fyJdu-bV7L5TYLUIghq61qnANDGsmE0LUwXFsgngnWMAnKeU5tzZniIKiUljS1AUqAMRBWGclmaPHXDc6547kPJ9Nfjtdv2A9WVlPJ</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Polash, B.</creator><creator>Huq, H.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200808</creationdate><title>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</title><author>Polash, B. ; Huq, H.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bd8cee1a0c63559b5a49d10f353c3618ef42db438415266d0cba12013315d8a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical models</topic><topic>Carbon nanotubes</topic><topic>CNTFETs</topic><topic>Electron tubes</topic><topic>Equations</topic><topic>Logic gates</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Polash, B.</creatorcontrib><creatorcontrib>Huq, H.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Polash, B.</au><au>Huq, H.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications</atitle><btitle>2008 51st Midwest Symposium on Circuits and Systems</btitle><stitle>MWSCAS</stitle><date>2008-08</date><risdate>2008</risdate><spage>61</spage><epage>64</epage><pages>61-64</pages><issn>1548-3746</issn><eissn>1558-3899</eissn><isbn>9781424421664</isbn><isbn>1424421667</isbn><eisbn>1424421675</eisbn><eisbn>9781424421671</eisbn><abstract>The recent developments of carbon nanotube field effect transistor (CNTFET) technology indicate the perspective of the nanoelectromechanical systems (NEMS). Carbon nanotubes (CNT) are ideal candidates for NEMS due to their chemical and physical structures, low masses and exceptional stiffness. An analytical representation of (CNT) based field effect transistor is developed for high frequency NEMS applications to examine the characteristics observed from the fabricated devices. The metal-nanotube contacts in the CNTFETs are treated as Schottky barriers and analyzed by means of a ballistic model. The famous Landauer formula is used to calculate the conductance of the tube by relating the energy dependant transmission probability within the tight binding approximation of the CNTFET. Transmission function of the CNT is expressed in terms of the Greenpsilas functions of the conductors and the coupling of the conductor leads. The Greenpsilas function is incorporated with the transfer Hamiltonian approach to calculate the tunneling currents. The non-equilibrium Greenpsilas function transport equation is solved iteratively along with a 2D Poisson equation to improve the numerical convergence. The charge density is calculated by integrating the 1D universal density-of-states along with the source-drain Fermi-Dirac distribution function over energy within the energy gap of the CNT. The calculations show that the proposed device can perform stable operation at high current levels (670 muA/mum). Upper limits of device characteristics are considered for the model. Degradation in measured data is observed due to the limitations in device fabrication technology and imperfect contact placement on the CNT.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.2008.4616736</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-3746 |
ispartof | 2008 51st Midwest Symposium on Circuits and Systems, 2008, p.61-64 |
issn | 1548-3746 1558-3899 |
language | eng |
recordid | cdi_ieee_primary_4616736 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Carbon nanotubes CNTFETs Electron tubes Equations Logic gates Mathematical model |
title | Analytical model of Carbon Nanotube Field Effect Transistors for NEMS applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analytical%20model%20of%20Carbon%20Nanotube%20Field%20Effect%20Transistors%20for%20NEMS%20applications&rft.btitle=2008%2051st%20Midwest%20Symposium%20on%20Circuits%20and%20Systems&rft.au=Polash,%20B.&rft.date=2008-08&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.issn=1548-3746&rft.eissn=1558-3899&rft.isbn=9781424421664&rft.isbn_list=1424421667&rft_id=info:doi/10.1109/MWSCAS.2008.4616736&rft_dat=%3Cieee_6IE%3E4616736%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421675&rft.eisbn_list=9781424421671&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4616736&rfr_iscdi=true |