Consensus based distributed particle filter in sensor networks

This paper presents a distributed particle filter over sensor networks. We propose two major steps to make a particle filter to work in a distributed way. The first step is the estimation of global mean and covariance of weighted particles by using an average consensus filter. The second step is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dongbing Gu, Junxi Sun, Zhen Hu, Hongzuo Li
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue
container_start_page 302
container_title
container_volume
creator Dongbing Gu
Junxi Sun
Zhen Hu
Hongzuo Li
description This paper presents a distributed particle filter over sensor networks. We propose two major steps to make a particle filter to work in a distributed way. The first step is the estimation of global mean and covariance of weighted particles by using an average consensus filter. The second step is the propagation of the estimated global mean and covariance through state transition distribution and likelihood distribution by using an unscented transformation. Through this transformation, partial high order information of the estimated global mean and covariance can be incorporated into the estimates for non-linear models. Simulations of tracking tasks in a sensor network with 100 sensor nodes are given.
doi_str_mv 10.1109/ICINFA.2008.4608015
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4608015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4608015</ieee_id><sourcerecordid>4608015</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c3a2df31568ee45adecdd98307bf9de30dd36f90c10eebdda1dd97af5ad4a07f3</originalsourceid><addsrcrecordid>eNpFj1FLwzAUhSMy0M39gr3kD7Te2yRN-yKM4rQw9EWfR9rcQLS2I8kQ_70dDjwv5x7Ox4XD2AYhR4T6vm3al902LwCqXJZQAaortkRZSFlgJdX1fxB6wZZnsAZEjTdsHeMHzJJKCF3dsodmGiON8RR5ZyJZbn1MwXenNN9HE5LvB-LOD4kC9yM_s1PgI6XvKXzGO7ZwZoi0vviKve8e35rnbP_61DbbfeZRq5T1whTWCVRlRSSVsdRbW1cCdOdqSwKsFaWroUcg6qw1ONfauJmUBrQTK7b5--uJ6HAM_suEn8NlvPgFCUxOAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Consensus based distributed particle filter in sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dongbing Gu ; Junxi Sun ; Zhen Hu ; Hongzuo Li</creator><creatorcontrib>Dongbing Gu ; Junxi Sun ; Zhen Hu ; Hongzuo Li</creatorcontrib><description>This paper presents a distributed particle filter over sensor networks. We propose two major steps to make a particle filter to work in a distributed way. The first step is the estimation of global mean and covariance of weighted particles by using an average consensus filter. The second step is the propagation of the estimated global mean and covariance through state transition distribution and likelihood distribution by using an unscented transformation. Through this transformation, partial high order information of the estimated global mean and covariance can be incorporated into the estimates for non-linear models. Simulations of tracking tasks in a sensor network with 100 sensor nodes are given.</description><identifier>ISBN: 1424421837</identifier><identifier>ISBN: 9781424421831</identifier><identifier>EISBN: 1424421845</identifier><identifier>EISBN: 9781424421848</identifier><identifier>DOI: 10.1109/ICINFA.2008.4608015</identifier><identifier>LCCN: 2008901171</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Information filters ; Mathematical model ; Message passing ; Particle filters ; Probability density function ; Robot sensing systems</subject><ispartof>2008 International Conference on Information and Automation, 2008, p.302-307</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4608015$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4608015$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dongbing Gu</creatorcontrib><creatorcontrib>Junxi Sun</creatorcontrib><creatorcontrib>Zhen Hu</creatorcontrib><creatorcontrib>Hongzuo Li</creatorcontrib><title>Consensus based distributed particle filter in sensor networks</title><title>2008 International Conference on Information and Automation</title><addtitle>ICINFA</addtitle><description>This paper presents a distributed particle filter over sensor networks. We propose two major steps to make a particle filter to work in a distributed way. The first step is the estimation of global mean and covariance of weighted particles by using an average consensus filter. The second step is the propagation of the estimated global mean and covariance through state transition distribution and likelihood distribution by using an unscented transformation. Through this transformation, partial high order information of the estimated global mean and covariance can be incorporated into the estimates for non-linear models. Simulations of tracking tasks in a sensor network with 100 sensor nodes are given.</description><subject>Equations</subject><subject>Information filters</subject><subject>Mathematical model</subject><subject>Message passing</subject><subject>Particle filters</subject><subject>Probability density function</subject><subject>Robot sensing systems</subject><isbn>1424421837</isbn><isbn>9781424421831</isbn><isbn>1424421845</isbn><isbn>9781424421848</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj1FLwzAUhSMy0M39gr3kD7Te2yRN-yKM4rQw9EWfR9rcQLS2I8kQ_70dDjwv5x7Ox4XD2AYhR4T6vm3al902LwCqXJZQAaortkRZSFlgJdX1fxB6wZZnsAZEjTdsHeMHzJJKCF3dsodmGiON8RR5ZyJZbn1MwXenNN9HE5LvB-LOD4kC9yM_s1PgI6XvKXzGO7ZwZoi0vviKve8e35rnbP_61DbbfeZRq5T1whTWCVRlRSSVsdRbW1cCdOdqSwKsFaWroUcg6qw1ONfauJmUBrQTK7b5--uJ6HAM_suEn8NlvPgFCUxOAA</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Dongbing Gu</creator><creator>Junxi Sun</creator><creator>Zhen Hu</creator><creator>Hongzuo Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Consensus based distributed particle filter in sensor networks</title><author>Dongbing Gu ; Junxi Sun ; Zhen Hu ; Hongzuo Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c3a2df31568ee45adecdd98307bf9de30dd36f90c10eebdda1dd97af5ad4a07f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Equations</topic><topic>Information filters</topic><topic>Mathematical model</topic><topic>Message passing</topic><topic>Particle filters</topic><topic>Probability density function</topic><topic>Robot sensing systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Dongbing Gu</creatorcontrib><creatorcontrib>Junxi Sun</creatorcontrib><creatorcontrib>Zhen Hu</creatorcontrib><creatorcontrib>Hongzuo Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dongbing Gu</au><au>Junxi Sun</au><au>Zhen Hu</au><au>Hongzuo Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Consensus based distributed particle filter in sensor networks</atitle><btitle>2008 International Conference on Information and Automation</btitle><stitle>ICINFA</stitle><date>2008-06</date><risdate>2008</risdate><spage>302</spage><epage>307</epage><pages>302-307</pages><isbn>1424421837</isbn><isbn>9781424421831</isbn><eisbn>1424421845</eisbn><eisbn>9781424421848</eisbn><abstract>This paper presents a distributed particle filter over sensor networks. We propose two major steps to make a particle filter to work in a distributed way. The first step is the estimation of global mean and covariance of weighted particles by using an average consensus filter. The second step is the propagation of the estimated global mean and covariance through state transition distribution and likelihood distribution by using an unscented transformation. Through this transformation, partial high order information of the estimated global mean and covariance can be incorporated into the estimates for non-linear models. Simulations of tracking tasks in a sensor network with 100 sensor nodes are given.</abstract><pub>IEEE</pub><doi>10.1109/ICINFA.2008.4608015</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421837
ispartof 2008 International Conference on Information and Automation, 2008, p.302-307
issn
language eng
recordid cdi_ieee_primary_4608015
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Information filters
Mathematical model
Message passing
Particle filters
Probability density function
Robot sensing systems
title Consensus based distributed particle filter in sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Consensus%20based%20distributed%20particle%20filter%20in%20sensor%20networks&rft.btitle=2008%20International%20Conference%20on%20Information%20and%20Automation&rft.au=Dongbing%20Gu&rft.date=2008-06&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.isbn=1424421837&rft.isbn_list=9781424421831&rft_id=info:doi/10.1109/ICINFA.2008.4608015&rft_dat=%3Cieee_6IE%3E4608015%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421845&rft.eisbn_list=9781424421848&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4608015&rfr_iscdi=true