Speaker diarization in a multi-speaker environment using particle swarm optimization and mutual information

The duty of speaker diarization comprises of answering the question ldquoWho spoke when?rdquo. In this paper, we present an approach comprising of PSO (particle swarm optimization) algorithm, which encodes possible segmentations of an audio record by measuring mutual information between these segmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mirrezaie, S.M., Ahadi, S.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1536
container_issue
container_start_page 1533
container_title
container_volume
creator Mirrezaie, S.M.
Ahadi, S.M.
description The duty of speaker diarization comprises of answering the question ldquoWho spoke when?rdquo. In this paper, we present an approach comprising of PSO (particle swarm optimization) algorithm, which encodes possible segmentations of an audio record by measuring mutual information between these segments and the audio data.. This measure is used as the fitness function for the PSO. This algorithm has been tested on two actual sets of data with up to 8 speakers for speaker diarization, and has led to very good results in all test problems. The results have been compared to the same approach using genetic algorithm (GA) and the widely used DISTBIC algorithm in several practical situations, and found to be superior in most of the cases. No assumptions have been made about prior knowledge of speech signal characteristics. However, we assume that the speakers do not speak simultaneously and that we have no real-time constraints.
doi_str_mv 10.1109/ICME.2008.4607739
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4607739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4607739</ieee_id><sourcerecordid>4607739</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-dadd095aeacdfa843b07c4780c96923c3ce4774069e8cb9c942cb2db47271fa43</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc2jEm3pByA2_oGUsT2p4yWqClQqYgFI7KqJ7SDTvOSkIPh6ChSYzZXu0T2LYexMwFQIMBfL-e1iKgGyKc5Aa2UO2EigRJSpFuaQDYXBNNFZ9nT0DwCO_4AWAzb6EhhABHnCJl33ArvTiAbUkG3uW08bH7kLFMMH9aGpeag58Wpb9iHp9tjXryE2deXrnm-7UD_zlmIfbOl590ax4k3bh-pXQLXb7fstlTtX0cTquz5lg4LKzk_2OWaPV4uH-U2yurtezi9XSRA67RNHzoFJyZN1BWWoctAWdQbWzIxUVlmPWiPMjM9sbqxBaXPpctRSi4JQjdn5jzd479dtDBXF9_X-g-oTFHNhpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speaker diarization in a multi-speaker environment using particle swarm optimization and mutual information</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mirrezaie, S.M. ; Ahadi, S.M.</creator><creatorcontrib>Mirrezaie, S.M. ; Ahadi, S.M.</creatorcontrib><description>The duty of speaker diarization comprises of answering the question ldquoWho spoke when?rdquo. In this paper, we present an approach comprising of PSO (particle swarm optimization) algorithm, which encodes possible segmentations of an audio record by measuring mutual information between these segments and the audio data.. This measure is used as the fitness function for the PSO. This algorithm has been tested on two actual sets of data with up to 8 speakers for speaker diarization, and has led to very good results in all test problems. The results have been compared to the same approach using genetic algorithm (GA) and the widely used DISTBIC algorithm in several practical situations, and found to be superior in most of the cases. No assumptions have been made about prior knowledge of speech signal characteristics. However, we assume that the speakers do not speak simultaneously and that we have no real-time constraints.</description><identifier>ISSN: 1945-7871</identifier><identifier>ISBN: 1424425700</identifier><identifier>ISBN: 9781424425709</identifier><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 1424425719</identifier><identifier>EISBN: 9781424425716</identifier><identifier>DOI: 10.1109/ICME.2008.4607739</identifier><identifier>LCCN: 2008904402</identifier><language>eng</language><publisher>IEEE</publisher><subject>Entropy ; Gallium ; genetic algorithm ; Indexing ; Mutual information ; Particle swarm optimization ; Speaker diarization ; speaker segmentation and indexing ; Speech</subject><ispartof>2008 IEEE International Conference on Multimedia and Expo, 2008, p.1533-1536</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4607739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4607739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mirrezaie, S.M.</creatorcontrib><creatorcontrib>Ahadi, S.M.</creatorcontrib><title>Speaker diarization in a multi-speaker environment using particle swarm optimization and mutual information</title><title>2008 IEEE International Conference on Multimedia and Expo</title><addtitle>ICME</addtitle><description>The duty of speaker diarization comprises of answering the question ldquoWho spoke when?rdquo. In this paper, we present an approach comprising of PSO (particle swarm optimization) algorithm, which encodes possible segmentations of an audio record by measuring mutual information between these segments and the audio data.. This measure is used as the fitness function for the PSO. This algorithm has been tested on two actual sets of data with up to 8 speakers for speaker diarization, and has led to very good results in all test problems. The results have been compared to the same approach using genetic algorithm (GA) and the widely used DISTBIC algorithm in several practical situations, and found to be superior in most of the cases. No assumptions have been made about prior knowledge of speech signal characteristics. However, we assume that the speakers do not speak simultaneously and that we have no real-time constraints.</description><subject>Entropy</subject><subject>Gallium</subject><subject>genetic algorithm</subject><subject>Indexing</subject><subject>Mutual information</subject><subject>Particle swarm optimization</subject><subject>Speaker diarization</subject><subject>speaker segmentation and indexing</subject><subject>Speech</subject><issn>1945-7871</issn><issn>1945-788X</issn><isbn>1424425700</isbn><isbn>9781424425709</isbn><isbn>1424425719</isbn><isbn>9781424425716</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc2jEm3pByA2_oGUsT2p4yWqClQqYgFI7KqJ7SDTvOSkIPh6ChSYzZXu0T2LYexMwFQIMBfL-e1iKgGyKc5Aa2UO2EigRJSpFuaQDYXBNNFZ9nT0DwCO_4AWAzb6EhhABHnCJl33ArvTiAbUkG3uW08bH7kLFMMH9aGpeag58Wpb9iHp9tjXryE2deXrnm-7UD_zlmIfbOl590ax4k3bh-pXQLXb7fstlTtX0cTquz5lg4LKzk_2OWaPV4uH-U2yurtezi9XSRA67RNHzoFJyZN1BWWoctAWdQbWzIxUVlmPWiPMjM9sbqxBaXPpctRSi4JQjdn5jzd479dtDBXF9_X-g-oTFHNhpQ</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Mirrezaie, S.M.</creator><creator>Ahadi, S.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Speaker diarization in a multi-speaker environment using particle swarm optimization and mutual information</title><author>Mirrezaie, S.M. ; Ahadi, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-dadd095aeacdfa843b07c4780c96923c3ce4774069e8cb9c942cb2db47271fa43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Entropy</topic><topic>Gallium</topic><topic>genetic algorithm</topic><topic>Indexing</topic><topic>Mutual information</topic><topic>Particle swarm optimization</topic><topic>Speaker diarization</topic><topic>speaker segmentation and indexing</topic><topic>Speech</topic><toplevel>online_resources</toplevel><creatorcontrib>Mirrezaie, S.M.</creatorcontrib><creatorcontrib>Ahadi, S.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirrezaie, S.M.</au><au>Ahadi, S.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speaker diarization in a multi-speaker environment using particle swarm optimization and mutual information</atitle><btitle>2008 IEEE International Conference on Multimedia and Expo</btitle><stitle>ICME</stitle><date>2008-06</date><risdate>2008</risdate><spage>1533</spage><epage>1536</epage><pages>1533-1536</pages><issn>1945-7871</issn><eissn>1945-788X</eissn><isbn>1424425700</isbn><isbn>9781424425709</isbn><eisbn>1424425719</eisbn><eisbn>9781424425716</eisbn><abstract>The duty of speaker diarization comprises of answering the question ldquoWho spoke when?rdquo. In this paper, we present an approach comprising of PSO (particle swarm optimization) algorithm, which encodes possible segmentations of an audio record by measuring mutual information between these segments and the audio data.. This measure is used as the fitness function for the PSO. This algorithm has been tested on two actual sets of data with up to 8 speakers for speaker diarization, and has led to very good results in all test problems. The results have been compared to the same approach using genetic algorithm (GA) and the widely used DISTBIC algorithm in several practical situations, and found to be superior in most of the cases. No assumptions have been made about prior knowledge of speech signal characteristics. However, we assume that the speakers do not speak simultaneously and that we have no real-time constraints.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2008.4607739</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7871
ispartof 2008 IEEE International Conference on Multimedia and Expo, 2008, p.1533-1536
issn 1945-7871
1945-788X
language eng
recordid cdi_ieee_primary_4607739
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Entropy
Gallium
genetic algorithm
Indexing
Mutual information
Particle swarm optimization
Speaker diarization
speaker segmentation and indexing
Speech
title Speaker diarization in a multi-speaker environment using particle swarm optimization and mutual information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speaker%20diarization%20in%20a%20multi-speaker%20environment%20using%20particle%20swarm%20optimization%20and%20mutual%20information&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Mirrezaie,%20S.M.&rft.date=2008-06&rft.spage=1533&rft.epage=1536&rft.pages=1533-1536&rft.issn=1945-7871&rft.eissn=1945-788X&rft.isbn=1424425700&rft.isbn_list=9781424425709&rft_id=info:doi/10.1109/ICME.2008.4607739&rft_dat=%3Cieee_6IE%3E4607739%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425719&rft.eisbn_list=9781424425716&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4607739&rfr_iscdi=true